Have a personal or library account? Click to login
MicroRNAs: potential regulators of airway smooth muscle cell plasticity involved in asthma-induced airway remodeling Cover

MicroRNAs: potential regulators of airway smooth muscle cell plasticity involved in asthma-induced airway remodeling

By: Xiaoying Ji,  Jinxiu Li and  Xudong Xiang  
Open Access
|Feb 2017

References

  1. 1. Pepe C, Foley S, Shannon J, Lemiere C, Olivenstein R, Ernst P, et al. Differences in airway remodeling between subjects with severe and moderate asthma. J Allergy Clin Immunol. 2005; 116:544-9.10.1016/j.jaci.2005.06.01116159622
  2. 2. Dekkers BGJ, Maarsingh H, Meurs H, Gosens R. Airway structural components drive airway smooth muscle remodeling in asthma. Proc Am Thorac Soc. 2009; 6:683-92.10.1513/pats.200907-056DP20008876
  3. 3. Bai TR. Evidence for airway remodeling in chronic asthma. Curr Opin Allergy Clin Immunol. 2010; 10:82-6.10.1097/ACI.0b013e32833363b219858714
  4. 4. Kuo C, Lim S, King NJC, Bartlett NW, Walton RP, Zhu J, et al. Rhinovirus infection induces expression of airway remodelling factors in vitro and in vivo. Respirology. 2011; 16:367-77.10.1111/j.1440-1843.2010.01918.x21199160
  5. 5. Leigh R, Ellis R, Wattie JN, Hirota JA, Matthaei KI, Foster PS, et al. Type 2 cytokines in the pathogenesis of sustained airway dysfunction and airway remodeling in mice. Am J Respir Crit Care Med. 2004; 169:860-7.10.1164/rccm.200305-706OC14701709
  6. 6. Hakonarson H, Maskeri N, Carter C, Grunstein MM. Regulation of TH1-and TH2-type cytokine expression and action in atopic asthmatic sensitized airway smooth muscle. J Clin Invest. 1999; 103:1077-88.10.1172/JCI580940826210194481
  7. 7. Dekkers BG, Bos IS, Zaagsma J, H. M. Functional consequences of human airway smooth muscle phenotype plasticity. Br J Pharmacol. 2012 166:359-67.10.1111/j.1476-5381.2011.01773.x341566022053853
  8. 8. Hirota JA, Nguyen TTB, Schaafsma D, Sharma P, Tran T. Airway smooth muscle in asthma: phenotype plasticity and function. Pulm Pharmacol Ther. 2009; 22:370-8.10.1016/j.pupt.2008.12.00419114115
  9. 9. Roscioni SS, Prins AG, Elzinga CRS, Menzen MH, Dekkers BGJ, Halayko AJ, et al. Protein kinase A and the exchange protein directly activated by cAMP (Epac) modulate phenotype plasticity in human airway smooth muscle. Br J Pharmacol. 2011; 164: 958-69.10.1111/j.1476-5381.2011.01354.x319591821426315
  10. 10. Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res. 2007; 61:17R-23R.10.1203/pdr.0b013e318045760e17413846
  11. 11. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010; 79:351-79.10.1146/annurev-biochem-060308-103103
  12. 12. Tsai LM, Yu D. MicroRNAs in common diseases and potential therapeutic applications. Clin Exp Pharmacol Physiol. 2010; 37:102-7.10.1111/j.1440-1681.2009.05269.x
  13. 13. Bartel DP. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004; 116:281-97.10.1016/S0092-8674(04)00045-5
  14. 14. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75: 843-54.10.1016/0092-8674(93)90529-Y
  15. 15. Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 19:92-105.10.1101/gr.082701.108261296918955434
  16. 16. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004; 101:2999-3004.10.1073/pnas.030732310136573414973191
  17. 17. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003; 425:415-9.10.1038/nature0195714508493
  18. 18. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNAprocessing. Genes Dev. 2004; 18:3016-27.10.1101/gad.126250453591315574589
  19. 19. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC. Mammalian mirtron genes. Mol Cell. 2007; 28:328-36.10.1016/j.molcel.2007.09.028276338417964270
  20. 20. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004; 10: 1957-66.10.1261/rna.7135204137068415525708
  21. 21. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004; 23:4051-60.10.1038/sj.emboj.760038552433415372072
  22. 22. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006; 13:1097-101.10.1038/nsmb116717099701
  23. 23. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 2005; 33: 2697-706.10.1093/nar/gki567111074215891114
  24. 24. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005; 6: 376-85.10.1038/nrm164415852042
  25. 25. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009; 10:126-39.10.1038/nrm263219165215
  26. 26. Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005; 11: 241-7.10.1261/rna.7240905137071315701730
  27. 27. Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J. 2007; 26:775-83.10.1038/sj.emboj.7601512179437817255951
  28. 28. Lund E, Göttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004; 303:95-8.10.1126/science.109059914631048
  29. 29. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003; 17:3011-6.10.1101/gad.115880330525214681208
  30. 30. Koscianska E, Starega-Roslan J, Krzyzosiak WJ. The Role of Dicer Protein Partners in the Processing of MicroRNA Precursors. PLoS ONE. 2011; 6:e28548.10.1371/journal.pone.0028548323224822163034
  31. 31. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN. The role of PACT in the RNA silencing pathway. EMBO j. 2006; 25:522-32.10.1038/sj.emboj.7600942138352716424907
  32. 32. Zhou H, Huang X, Cui H, Luo X, Tang Y, Chen S, et al. miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood. 2010; 116:5885-94.10.1182/blood-2010-04-28015620852130
  33. 33. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010; 39:133-44.10.1016/j.molcel.2010.06.01020603081
  34. 34. Rainer J, Ploner C, Jesacher S, Ploner A, Eduardoff M, Mansha M, et al Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia. Leukemia. 2009; 23:746-52.10.1038/leu.2008.37019148136
  35. 35. Havens MA, Reich AA, Duelli DM, Hastings ML. Biogenesis of mammalian microRNAs by a noncanonical processing pathway. Nucleic Acids Res. 2012. [Epub ahead of print]10.1093/nar/gks026337886922270084
  36. 36. Ender C, Krek A, Friedl­nder MR, Beitzinger M, Weinmann L, Chen W, et al. A human snoRNA with microRNA-like functions. Mol Cell. 2008; 32:519-28.10.1016/j.molcel.2008.10.01719026782
  37. 37. Kawahara Y, Mieda-Sato A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci U S A 2012; 109:3347-52.10.1073/pnas.1112427109329527822323604
  38. 38. Sakamoto S, Aoki K, Higuchi T, Todaka H, Morisawa K, Tamaki N, et al. The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol Cell Biol. 2009; 29:3754-69.10.1128/MCB.01836-08269874519398578
  39. 39. Michlewski G, C­ceres JF. Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis. Nat Struct Mol Biol. 2010; 17:1011-8.10.1038/nsmb.1874292302420639884
  40. 40. Pan L, Gong Z, Zhong Z, Dong Z, Liu Q, Le Y, et al. Lin-28 reactivation is required for let-7 repression and proliferation in human small cell lung cancer cells. Mol Cell Biochem. 2011; 355:257-63.10.1007/s11010-011-0862-x21553022
  41. 41. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008; 9:102-14.10.1038/nrg2290
  42. 42. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136:215-33.10.1016/j.cell.2009.01.002
  43. 43. Schwarz DS, Hutv­gner G, Du T, Xu Z, Aronin N, PD. Z. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003; 115:199-208.10.1016/S0092-8674(03)00759-1
  44. 44. Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009; 136:26-36.10.1016/j.cell.2008.12.02719135886
  45. 45. Vasudevan S, Steitz JA. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute2. Cell. 2007; 128:1105-18.10.1016/j.cell.2007.01.038343038217382880
  46. 46. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007; 318:1931-4.10.1126/science.114946018048652
  47. 47. Wang Y, Liang Y, Lu Q. MicroRNA epigenetic alterations: predicting biomarkers and therapeutic targets in human diseases. Clin Genet. 2008; 74:307-15.10.1111/j.1399-0004.2008.01075.x18713257
  48. 48. Yekta S, Shih I. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 2004; 304:594-6.10.1126/science.109743415105502
  49. 49. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005; 123:631-40.10.1016/j.cell.2005.10.02216271387
  50. 50. Grosshans H, Slack FJ. Micro-RNAs: small is plentiful. J Cell Biol. 2002; 156:17-21.10.1083/jcb.200111033217359511781331
  51. 51. Pauley KM, Chan EKL. MicroRNAs and their emerging roles in immunology. Ann N Y Acad Sci. 2008; 1143:226-39.10.1196/annals.1443.009
  52. 52. Flynt AS, Lai EC. Biological principles of microRNAmediated regulation: shared themes amid diversity. Nat Rev Genet. 2008; 9:831-42.10.1038/nrg2455
  53. 53. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences. 2007; 104:15805-10.10.1073/pnas.0707628104
  54. 54. Zhao S, Wang Y, Liang Y, Zhao M, Long H, Ding S, et al. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum. 2011; 63:1376-86.10.1002/art.30196
  55. 55. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009; 11:1143-9.10.1038/ncb1929
  56. 56. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002; 12:735-9.10.1016/S0960-9822(02)00809-6
  57. 57. Williams AE, Moschos SA, Perry MM, Barnes PJ, Lindsay MA. Maternally imprinted microRNAs are differentially expressed during mouse and human lung development. Dev Dyn. 2007; 236:572-80.10.1002/dvdy.21047258215117191223
  58. 58. Babak T, Zhang W, Morris Q, Blencowe BJ, Hughes TR. Probing microRNAs with microarrays: tissue specificity and functional inference. RNA. 2004; 10: 1813-9.10.1261/rna.7119904137066815496526
  59. 59. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004; 5:R13.10.1186/gb-2004-5-3-r1339576315003116
  60. 60. Polikepahad S, Knight JM, Naghavi AO, Oplt T, Creighton CJ, Shaw C, et al. Proinflammatory role for let-7 microRNAS in experimental asthma. J Biol Chem. 2010; 285:30139-49.10.1074/jbc.M110.145698294327220630862
  61. 61. Wang Y, Weng T, Gou D, Chen Z, Chintagari N, Liu L. Identification of rat lung-specific microRNAs by microRNA microarray: valuable discoveries for the facilitation of lung research. BMC Genomics. 2007; 8:29.10.1186/1471-2164-8-29179090217250765
  62. 62. Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 2009; 182: 4994-5002.10.4049/jimmunol.0803560428086219342679
  63. 63. Xie C, Huang H, Sun X, Guo Y, Hamblin M, Ritchie RP, et al. MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev. 2010; 20:205-10.10.1089/scd.2010.0283312875420799856
  64. 64. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010; 207:1589-97.10.1084/jem.20100035291613920643828
  65. 65. Garbacki N, Di Valentin E, Geurts P, Irrthum A, Crahay C, Arnould T, et al. MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PLoS ONE. 2011; 6:e16509.10.1371/journal.pone.0016509303060221305051
  66. 66. Goncharova EA, Lim PN, Chisolm A, Fogle HW, Taylor JH, Goncharov DA, et al. Interferons modulate mitogen-induced protein synthesis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2010; 299:L25-35.10.1152/ajplung.00228.2009290409320382746
  67. 67. Halayko AJ, Camoretti-Mercado B, Forsythe SM, Vieira JE, Mitchell RW, Wylam ME, et al. Divergent differentiation paths in airway smooth muscle culture: induction of functionally contractile myocytes. Am J Physiol Lung Cell Mol Physiol. 1999; 276:L197-206.10.1152/ajplung.1999.276.1.L1979887072
  68. 68. Halayko AJ, Salari H, MA X, Stephens NL. Markers of airway smooth muscle cell phenotype. Am J Physiol Lung Cell Mol Physiol. 1996; 270:L1040-51.10.1152/ajplung.1996.270.6.L10408764231
  69. 69. Benayoun L, Druilhe A, Dombret MC, Aubier M, M. P. Airway structural alterations selectively associated to severe asthma. Respir Res. 2003; 167: 1360-8.10.1164/rccm.200209-1030OC12531777
  70. 70. Bowers CW, Dahm LM. Maintenance of contractility in dissociated smooth muscle: low-density cultures in a defined medium. Am J Physiol. 1993; 264:C229-36.10.1152/ajpcell.1993.264.1.C2298430771
  71. 71. Ma X, Li W, Stephens NL. Detection of two clusters of mechanical properties of smooth muscle along the airway tree. J Appl Physiol. 1996; 80:857-61.10.1152/jappl.1996.80.3.857
  72. 72. Ma X, Cheng Z, Kong H, Wang Y, Unruh H, Stephens NL, et al. Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects. Am J Physiol Lung Cell Mol Physiol. 2002; 283:L1181.10.1152/ajplung.00389.2001
  73. 73. Hirst S. Airway smooth muscle cell culture: application to studies of airway wall remodelling and phenotype plasticity in asthma. Eur Respir J. 1996; 9:808-20.10.1183/09031936.96.09040808
  74. 74. Halayko AJ, Stephens NL. Potential role for phenotypic modulation of bronchial smooth muscle cells in chronic asthma. Can J Physiol Pharmacol. 1994; 72: 1448-57.10.1139/y94-209
  75. 75. Halayko A, Tran T, Ji S, Yamasaki A, Gosens R. Airway smooth muscle phenotype and function: interactions with current asthma therapies. Curr Drug Targets. 2006; 7:525-40.10.2174/138945006776818728
  76. 76. Johnson SR, Knox AJ. Synthetic functions of airway smooth muscle in asthma. Trends Pharmacol Sci. 1997; 18:288-92.10.1016/S0165-6147(97)90644-1
  77. 77. Dekkers BGJ, Schaafsma D, Nelemans SA, Zaagsma J, Meurs H. Extracellular matrix proteins differentially regulate airway smooth muscle phenotype and function. Am J Physiol Lung Cell Mol Physiol. 2007; 292:L1405-L13.10.1152/ajplung.00331.200617293376
  78. 78. Hirst SJ, Twort CHC, Lee TH. Differential effects of extracellular matrix proteins on human airway smooth muscle cell proliferation and phenotype. Am J Respir Cell Mol Biol. 2000; 23:335-44.10.1165/ajrcmb.23.3.399010970824
  79. 79. Mitchell RW, Halayko AJ, Kahraman S, Solway J, Wylam ME. Selective restoration of calcium coupling to muscarinic M3 receptors in contractile cultured airway myocytes. Am J Physiol Lung Cell Mol Physiol.2000; 278:L1091-100.10.1152/ajplung.2000.278.5.L109110781442
  80. 80. Gosens R, Meurs H, Bromhaar MMG, McKay S, Nelemans SA, Zaagsma J. Functional characterization of serum and growth factor induced phenotypic changes in intact bovine tracheal smooth muscle. Br J Pharmacol. 2002; 137:459-66.10.1038/sj.bjp.0704889157351412359627
  81. 81. Lé­guillette R, Laviolette M, Bergeron C, Zitouni N, Kogut P, Solway J, et al. Myosin, Transgelin, and Myosin Light Chain Kinase. Am J Respir Crit Care Med. 2009; 179:194-204.10.1164/rccm.200609-1367OC
  82. 82. Chiba Y, Ueno A, Shinozaki K, Takeyama H, Nakazawa S, Sakai H, et al. Involvement of RhoA-mediated Ca2+ sensitization in antigen-induced bronchial smooth muscle hyperresponsiveness in mice. Respir Res. 2005;6.10.1186/1465-9921-6-4
  83. 83. Chiba Y, Takada Y, Miyamoto S, MitsuiSaito M, Karaki H, Misawa M. Augmented acetylcholine induced, Rho-mediated Ca2+ sensitization of bronchial smooth muscle contraction in antigen-induced airway hyperresponsive rats. Br J Pharmacol. 1999; 127: 597-600.10.1038/sj.bjp.0702585
  84. 84. Chang Y, Al-Alwan L, Risse PA, Roussel L, Rousseau S, Halayko AJ, et al. TH17 cytokines induce human airway smooth muscle cell migration. J Allergy Clin Immunol. 2011; 186:4156-63.10.1016/j.jaci.2010.12.1117
  85. 85. Marthan R, Crevel H, Guenard H, Savineau JP. Responsiveness to histamine in human sensitized airway smooth muscle. Respir Physiol. 1992; 90: 239-50.10.1016/0034-5687(92)90084-A
  86. 86. Labont­ I, Hassan M, Risse PA, Tsuchiya K, Laviolette M, Lauzon AM, et al. The effects of repeated allergen challenge on airway smooth muscle structural and molecular remodeling in a rat model of allergic asthma. Am J Physiol Lung Cell Mol Physiol. 2009; 297:L698-705.10.1152/ajplung.00142.2009
  87. 87. Broide D, Lotz M, Cuomo A, Coburn D, Federman E, Wasserman S. Cytokines in symptomatic asthma airways. J Allergy Clin Immunol. 1992; 89:958-67.10.1016/0091-6749(92)90218-Q
  88. 88. Mattoli S, Mattoso VL, Soloperto M, Allegra L, Fasoli A. Cellular and biochemical characteristics of bronchoalveolar lavage fluid in symptomatic nonallergic asthma. J Allergy Clin Immunol. 1991; 87: 794-802.10.1016/0091-6749(91)90125-8
  89. 89. Kuhn AR, Schlauch K, Lao R, Halayko AJ, Gerthoffer WT, Singer CA. MicroRNA expression in human airway smooth muscle cells: role of miR-25 in regulation of airway smooth muscle phenotype. Am J Respir Cell Mol Biol. 2010; 42:506-13.10.1165/rcmb.2009-0123OC284874119541842
  90. 90. Mohamed JS, Lopez MA, Boriek AM. Mechanical Stretch Up-regulates MicroRNA-26a and Induces Human Airway Smooth Muscle Hypertrophy by Suppressing Glycogen Synthase Kinase-3­ J Biol Chem. 2010; 285:29336-47.
  91. 91. Mohamed JS, Hajira A, Li Z, Paulin D, Boriek AM. Early growth responsive protein-1 induces desmin null airway smooth muscle hypertrophy through MicroRNA-26a. J Biol Chem. 2011; 286:43394-404.10.1074/jbc.M111.235127323479821903578
  92. 92. Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol. 2011; 226:1035-43.10.1002/jcp.22422310857420857419
  93. 93. Chiba Y, Tanabe M, Goto K, Sakai H, Misawa M. Down-regulation of miR-133a contributes to upregulation of Rhoa in bronchial smooth muscle cells. Am J Respir Crit Care Med. 2009; 180:713-9.10.1164/rccm.200903-0325OC19644046
  94. 94. van Rooij E, Marshall WS, Olson EN. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res. 2008; 103:919-28.10.1161/CIRCRESAHA.108.183426272540718948630
  95. 95. Williams AE, Larner-Svensson H, Perry MM, Campbell GA, Herrick SE, Adcock IM, et al. MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy. PLoS ONE. 2009; 4:e5889.10.1371/journal.pone.0005889269040219521514
  96. 96. Moschos S, Williams A, Perry M, Birrell M, Belvisi M, Lindsay M. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics. 2007; 8:240.10.1186/1471-2164-8-240194000817640343
  97. 97. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garc­a JA, Paz-Ares J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet. 2007; 39:1033-7.10.1038/ng207917643101
  98. 98. Kr­tzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005; 438:685-9.10.1038/nature0430316258535
  99. 99. Simon HU, Seelbach H, Ehmann R, Schmitz M. Clinical and immunological effects of low-dose IFN-alpha treatment in patients with corticosteroid-resistant asthma. Allergy. 2003; 58:1250-5.10.1046/j.1398-9995.2003.00424.x14616099
  100. 100. Collison A, Mattes J, Plank M, Foster PS. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol. 2011; 128:160-7e4.10.1016/j.jaci.2011.04.00521571357
DOI: https://doi.org/10.5372/1905-7415.0701.145 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 3 - 14
Published on: Feb 4, 2017
Published by: Chulalongkorn University
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 Xiaoying Ji, Jinxiu Li, Xudong Xiang, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.