Have a personal or library account? Click to login
A step forward into respiratory genetics: overview contribution of genetics in respiratory diseases Cover

A step forward into respiratory genetics: overview contribution of genetics in respiratory diseases

Open Access
|Feb 2017

References

  1. 1. Hall IP. How will genetic approaches assist in the management of respiratory diseases? Curr Opin Pharmacol. 2009; 9:256-61.10.1016/j.coph.2009.03.00319409845
  2. 2. Owen C, Stockley R. Molecular biology and respiratory disease. I- Basic principles. Thorax. 1990; 45:52-6.10.1136/thx.45.1.524756502181718
  3. 3. Cottin V. Clinical genetics for the pulmonologist: introduction. Respiration. 2007; 74:3-7.10.1159/00009683217190998
  4. 4. Rowe S, Miller S, Sorscher E. Cystic fibrosis. N Engl J Med. 2005; 352:1992-2001.10.1056/NEJMra04318415888700
  5. 5. Choe Y, Ko J, Seo J, Han J, Shim J, Koh Y, et al. Novel CFTR mutations in a Korean infant with cystic fibrosis and pancreatic insufficiency. J Korean Med Sci. 2010; 25:163-5.10.3346/jkms.2010.25.1.163280001520052365
  6. 6. Collins F. Genetics terminology for respiratory physicians. Paediatr Respir Rev. 2009; 10:124-33.10.1016/j.prrv.2009.04.00319651383
  7. 7. Fu J, Festen EA, Wijmenga C. Multi-ethnic studies in complex traits. Hum Mol Genet. 2011; 20:R206-13.10.1093/hmg/ddr386317938421890495
  8. 8. Ober C, Hoffjan S. Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun. 2006; 7:95-100.10.1038/sj.gene.636428416395390
  9. 9. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 2007; 448:470-3.10.1038/nature0601417611496
  10. 10. Leung TF, Sy HY, Ng MC, Chan IH, Wong GW, Tang NL, et al. Asthma and atopy are associated with chromosome 17q21 markers in Chinese children. Allergy. 2009; 64:621-8.10.1111/j.1398-9995.2008.01873.x19175592
  11. 11. Tamari M, Tomita K, Hirota T. Genome-wide association studies of asthma. Allergol Int. 2011; 60: 247-52.10.2332/allergolint.11-RAI-032021681015
  12. 12. Himes BE, Hunninghake GM, Baurley JW, Rafaels NM, Sleiman P, Strachan DP, et al. Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene. Am J Hum Genet. 2009; 84:581-93.10.1016/j.ajhg.2009.04.006268101019426955
  13. 13. Boezen HM. Genome-wide association studies: what do they teach us about asthma and chronic obstructive pulmonary disease? Proc Am Thorac Soc. 2009; 6: 701-3.10.1513/pats.200907-058DP20008879
  14. 14. Kabesch M. Novel asthma-associated genes from genome-wide association studies: what is their significance? Chest. 2010; 137:909-15.10.1378/chest.09-155420371526
  15. 15. Mak JC. Pathogenesis of COPD. Part II. Oxidativeantioxidative imbalance. Int J Tuberc Lung Dis. 2008; 12:368-74.
  16. 16. Abboud RT, Vimalanathan S. Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung Dis. 2008; 12:361-7.
  17. 17. Roth M. Pathogenesis of COPD. Part III. Inflammation in COPD. Int J Tuberc Lung Dis. 2008; 12:375-80.
  18. 18. Teramoto S. 1. COPD pathogenesis from the viewpoint of risk factors. Intern Med. 2007; 46:77-9.10.2169/internalmedicine.46.177517220602
  19. 19. Postma DS, Boezen HM. Rationale for the Dutch hypothesis. Allergy and airway hyperresponsiveness as genetic factors and their interaction with environment in the development of asthma and COPD. Chest. 2004; 126:96S-104S; discussion 59S-61S.10.1378/chest.126.2_suppl_1.96S15302769
  20. 20. Seifart C, Plagens A. Genetics of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2007; 2:541-50.
  21. 21. Wood AM, Stockley RA. Alpha one antitrypsin deficiency: from gene to treatment. Respiration. 2007; 74:481-92.10.1159/00010553617671403
  22. 22. Janciauskiene SM, Bals R, Koczulla R, Vogelmeier C, Kohnlein T, Welte T. The discovery of alpha1- antitrypsin and its role in health and disease. Respir Med. 2011.10.1016/j.rmed.2011.02.00221367592
  23. 23. Putra AC, Tanimoto K, Arifin M, Antariksa B, Hiyama K. Genetic variations in detoxification enzymes and HIF-1α in Japanese patients with COPD. Clin Respir J. in press.
  24. 24. Ishii T, Matsuse T, Teramoto S, Matsui H, Miyao M, Hosoi T, et al. Glutathione S-transferase P1 (GSTP1) polymorphism in patients with chronic obstructive pulmonary disease. Thorax. 1999; 54:693-6.10.1136/thx.54.8.693174553510413721
  25. 25. Sundberg K, Johansson AS, Stenberg G, Widersten M, Seidel A, Mannervik B, et al. Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1-1 towards carcinogenic diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis. 1998; 19: 433-6.10.1093/carcin/19.3.4339525277
  26. 26. Yoshikawa M, Hiyama K, Ishioka S, Maeda H, Maeda A, Yamakido M. Microsomal epoxide hydrolase genotypes and chronic obstructive pulmonary disease in Japanese. Int J Mol Med. 2000; 5:49-53.10.3892/ijmm.5.1.4910601573
  27. 27. Matera MG, Calzetta L, Cazzola M. TNF-alpha inhibitors in asthma and COPD: we must not throw the baby out with the bath water. Pulm Pharmacol Ther. 2010; 23:121-8.10.1016/j.pupt.2009.10.00719853667
  28. 28. Zhan P, Wang J, Wei SZ, Qian Q, Qiu LX, Yu LK, et al. TNF-308 gene polymorphism is associated with COPD risk among Asians: meta-analysis of data for 6,118 subjects. Mol Biol Rep. 2011; 38:219-27.10.1007/s11033-010-0098-y20364405
  29. 29. Zhang S, Wang C, Xi B, Li X. Association between the tumour necrosis factor-alpha -308G/A polymorphism and chronic obstructive pulmonary disease: An update. Respirology. 2010.10.1111/j.1440-1843.2010.01879.x20946339
  30. 30. Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004; 59:574-80.10.1136/thx.2003.019588174707015223864
  31. 31. Obeidat M, Wain LV, Shrine N, Kalsheker N, Soler Artigas M, Repapi E, et al.A comprehensive evaluation of potential lung function associated genes in the SpiroMeta general population sample. PLoS One. 2011; 6:e19382.10.1371/journal.pone.0019382309883921625484
  32. 32. Artigas MS, Loth DW, Wain LV, Gharib SA, Obeidat M, Tang W, et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat Genet. 2011; 43:1082-90.10.1038/ng.941326737621946350
  33. 33. Soler Artigas M, Wain LV, Repapi E, Obeidat M, Sayers I, Burton PR, et al. Effect of five genetic variants associated with lung function on the risk of chronic obstructive lung disease, and their joint effects on lung function. Am J Respir Crit Care Med. 2011; 184:786-95.10.1164/rccm.201102-0192OC339841621965014
  34. 34. Pillai SG, Kong X, Edwards LD, Cho MH, Anderson WH, Coxson HO, et al. Loci identified by genomewide association studies influence different diseaserelated phenotypes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010; 182: 1498-505.10.1164/rccm.201002-0151OC302993620656943
  35. 35. Cho MH, Castaldi PJ, Wan ES, Siedlinski M, Hersh CP, Demeo DL, et al. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum Mol Genet. 2011.
  36. 36. Wang Y, Yang H, Li L, Wang H, Zhang C, Yin G, et al. Association between CYP2E1 genetic polymorphisms and lung cancer risk: a meta-analysis. Eur J Cancer. 2010; 46:758-64.10.1016/j.ejca.2009.12.01020031389
  37. 37. Hu Z, Wei Q, Wang X, Shen H. DNA repair gene XPD polymorphism and lung cancer risk: a meta-analysis. Lung Cancer. 2004; 46:1-10.10.1016/j.lungcan.2004.03.016
  38. 38. Hsu NY, Wang HC, Wang CH, Chang CL, Chiu CF, Lee HZ, et al. Lung cancer susceptibility and genetic polymorphism of DNA repair gene XRCC4 in Taiwan. Cancer Biomark. 2009; 5:159-65.10.3233/CBM-2009-0617
  39. 39. Piao JM, Kim HN, Song HR, Kweon SS, Choi JS, Yun WJ, et al. p53 codon 72 polymorphism and the risk of lung cancer in a Korean population. Lung Cancer. 2011.10.1016/j.lungcan.2010.12.017
  40. 40. Lind H, Zienolddiny S, Ryberg D, Skaug V, Phillips DH, Haugen A. Interleukin 1 receptor antagonist gene polymorphism and risk of lung cancer: a possible interaction with polymorphisms in the interleukin 1 beta gene. Lung Cancer. 2005; 50:285-90.10.1016/j.lungcan.2005.07.003
  41. 41. Putra AC, Tanimoto K, Arifin M, Hiyama K. Hypoxia inducible factor-1alpha polymorphisms are associated with genetic aberrations in lung cancer. Respirology. 2011.10.1111/j.1440-1843.2011.01972.x
  42. 42. Tanimoto K, Yoshiga K, Eguchi H, Kaneyasu M, Ukon K, Kumazaki T, et al. Hypoxia-inducible factor-1alpha polymorphisms associated with enhanced transactivation capacity, implying clinical significance. Carcinogenesis. 2003; 24:1779-83.10.1093/carcin/bgg132
  43. 43. Arifin M, Tanimoto K, Putra AC, Hiyama E, Nishiyama M, Hiyama K. Carcinogenesis and cellular immortalization without persistent inactivation of p16/ Rb pathway in lung cancer. Int J Oncol. 2010; 36: 1217-27.
  44. 44. Young RP, Hopkins RJ, Whittington CF, Hay BA, Epton MJ, Gamble GD. Individual and cumulative effects of GWAS susceptibility loci in lung cancer: associations after sub-phenotyping for COPD. PLoS One. 2011; 6:e16476.10.1371/journal.pone.0016476
  45. 45. Bernhardt WM, Warnecke C, Willam C, Tanaka T, Wiesener MS, Eckardt KU. Organ protection by hypoxia and hypoxia-inducible factors. Methods Enzymol. 2007; 435:221-45.10.1016/S0076-6879(07)35012-X
  46. 46. Semenza GL. Involvement of hypoxia-inducible factor 1 in human cancer. Intern Med. 2002; 41:79-83.10.2169/internalmedicine.41.7911868612
  47. 47. Koukourakis MI, Papazoglou D, Giatromanolaki A, Panagopoulos I, Maltezos E, Harris AL, et al. C2028T polymorphism in exon 12 and dinucleotide repeat polymorphism in intron 13 of the HIF-1alpha gene define HIF-1alpha protein expression in non-small cell lung cancer. Lung Cancer. 2006; 53:257-62.10.1016/j.lungcan.2006.05.02516837101
  48. 48. Kim HO, Jo YH, Lee J, Lee SS, Yoon KS. The C1772T genetic polymorphism in human HIF-1alpha gene associates with expression of HIF-1alpha protein in breast cancer. Oncol Rep. 2008; 20:1181-7.
  49. 49. Ollerenshaw M, Page T, Hammonds J, Demaine A. Polymorphisms in the hypoxia inducible factor-1alpha gene (HIF1A) are associated with the renal cell carcinoma phenotype. Cancer Genet Cytogenet. 2004; 153:122-6.10.1016/j.cancergencyto.2004.01.01415350301
  50. 50. Kuwai T, Kitadai Y, Tanaka S, Kuroda T, Ochiumi T, Matsumura S, et al. Single nucleotide polymorphism in the hypoxia-inducible factor-1alpha gene in colorectal carcinoma. Oncol Rep. 2004; 12:1033-7.
  51. 51. Konac E, Onen HI, Metindir J, Alp E, Biri AA, Ekmekci A. An investigation of relationships between hypoxia-inducible factor-1 alpha gene polymorphisms and ovarian, cervical and endometrial cancers. Cancer Detect Prev. 2007; 31:102-9.10.1016/j.cdp.2007.01.00117418979
  52. 52. American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med. 2000; 161:646-64. 10.1164/ajrccm.161.2.ats3-0010673212
  53. 53. Lawson W, Loyd J. The genetic approach in pulmonary fibrosis: can it provide clues to this complex disease? Proc Am Thorac Soc. 2006; 3:345-9.10.1513/pats.200512-137TK265868616738199
  54. 54. Garcia CK. Idiopathic pulmonary fibrosis: update on genetic discoveries. Proc Am Thorac Soc. 2011; 8: 158-62.10.1513/pats.201008-056MS313183321543794
  55. 55. Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009; 361:2353-65.10.1056/NEJMra0903373340158620007561
  56. 56. Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev. 2008; 88:557-79.10.1152/physrev.00026.200718391173
  57. 57. Alder JK, Chen JJ, Lancaster L, Danoff S, Su SC, Cogan JD, et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci U S A. 2008; 105:13051-6.10.1073/pnas.0804280105252910018753630
  58. 58. Cronkhite JT, Xing C, Raghu G, Chin KM, Torres F, Rosenblatt RL, et al. Telomere shortening in familial and sporadic pulmonary fibrosis. Am J Respir Crit Care Med. 2008; 178:729-37.10.1164/rccm.200804-550OC255645518635888
  59. 59. Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C, et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med. 2007; 356:1317-26.10.1056/NEJMoa06615717392301
  60. 60. Diaz de Leon A, Cronkhite JT, Katzenstein AL, Godwin JD, Raghu G, Glazer CS, et al. Telomere lengths, pulmonary fibrosis and telomerase (TERT) mutations. PLoS One. 2010; 5:e10680.10.1371/journal.pone.0010680
  61. 61. World Health Organization. Global tuberculosis control: surveillance, planning, financing. WHO report. 2008.
  62. 62. World Health Organization. Policy Statement: Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB). Geneva, World Health Organization; 2008.
  63. 63. Palomino JC. Molecular detection, identification and drug resistance detection in Mycobacterium tuberculosis. FEMS Immunol Med Microbiol. 2009; 56: 103-11.10.1111/j.1574-695X.2009.00555.x
  64. 64. Ling DI, Zwerling AA, Pai M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur Respir J. 2008; 32: 1165-74.10.1183/09031936.00061808
  65. 65. Morgan M, Kalantri S, Flores L, Pai M. A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. BMC Infect Dis. 2005; 5:62.10.1186/1471-2334-5-62
  66. 66. Prayle A, Atkinson M, Smyth A. Pneumonia in the developed world. Paediatr Respir Rev. 2011; 12:60-9.10.1016/j.prrv.2010.09.012
  67. 67. Mitchell AM, Mitchell TJ. Streptococcus pneumoniae: virulence factors and variation. Clin Microbiol Infect. 2010; 16:411-8.10.1111/j.1469-0691.2010.03183.x
  68. 68. Preston JA, Dockrell DH. Virulence factors in pneumococcal respiratory pathogenesis. Future Microbiol. 2008; 3:205-21.10.2217/17460913.3.2.205
  69. 69. Mitchell TJ. Virulence factors and the pathogenesis of disease caused by Streptococcus pneumoniae. Res Microbiol. 2000; 151:413-9.10.1016/S0923-2508(00)00175-3
  70. 70. Ohlenschlaeger T, Garred P, Madsen HO, Jacobsen S. Mannose-binding lectin variant alleles and the risk of arterial thrombosis in systemic lupus erythematosus. N Engl J Med. 2004; 351:260-7.10.1056/NEJMoa03312215254284
  71. 71. Rantala A, Lajunen T, Juvonen R, Bloigu A, Silvennoinen-Kassinen S, Peitso A, et al. Mannosebinding lectin concentrations, MBL2 polymorphisms, and susceptibility to respiratory tract infections in young men. J Infect Dis. 2008; 198:1247-53.10.1086/59191218729778
  72. 72. Garcia-Laorden MI, Sole-Violan J, Rodriguez de Castro F, Aspa J, Briones ML, Garcia-Saavedra A, et al. Mannose-binding lectin and mannose-binding lectin-associated serine protease 2 in susceptibility, severity, and outcome of pneumonia in adults. J Allergy Clin Immunol. 2008; 122:368-74, 74 e1-2.10.1016/j.jaci.2008.05.037
  73. 73. Ruskamp JM, Hoekstra MO, Postma DS, Kerkhof M, Bottema RW, Koppelman GH, et al. Polymorphisms in the mannan-binding lectin gene are not associated with questionnaire-reported respiratory tract infections in children. J Infect Dis. 2008; 198:1707-13.10.1086/592989
  74. 74. Keynan Y, Juno J, Meyers A, Ball TB, Kumar A, Rubinstein E, et al. Chemokine receptor 5 big up tri, open32 allele in patients with severe pandemic (H1N1) 2009. Emerg Infect Dis. 2010; 16:1621-2.10.3201/eid1610.100108
  75. 75. Dawson TC, Beck MA, Kuziel WA, Henderson F, Maeda N. Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. Am J Pathol. 2000; 156:1951-9.10.1016/S0002-9440(10)65068-7
  76. 76. Qin G, Liu Y, Zheng J, Ng IH, Xiang Z, Lam KT, et al. Type 1 responses of human Vgamma9Vdelta2 T cells to influenza A viruses. J Virol. 2011; 85:10109-16.10.1128/JVI.05341-11319640821752902
  77. 77. Hall IP. Pharmacogenetics, pharmacogenomics and airway disease. Respir Res. 2002;3:10.10.1186/rr1596480811806845
  78. 78. Nebert DW. Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin Genet. 1999; 56:247-58.10.1034/j.1399-0004.1999.560401.x10636440
  79. 79. Taylor DR, Kennedy MA. Genetic variation of the beta(2)-adrenoceptor: its functional and clinical importance in bronchial asthma. Am J Pharmacogenomics. 2001; 1:165-74.10.2165/00129785-200101030-0000212083965
  80. 80. Andarini S, Kikuchi T, Nukiwa M, Pradono P, Suzuki T, Ohkouchi S, et al. Adenovirus vector-mediated in vivo gene transfer of OX40 ligand to tumor cells enhances antitumor immunity of tumor-bearing hosts. Cancer Res. 2004; 64:3281-7.10.1158/0008-5472.CAN-03-391115126371
  81. 81. Vachani A, Moon E, Wakeam E, Albelda SM. Gene therapy for mesothelioma and lung cancer. Am J Respir Cell Mol Biol. 2010; 42:385-93.10.1165/rcmb.2010-0026RT20160042
  82. 82. Cantero-Recasens G, Fandos C, Rubio-Moscardo F, Valverde MA, Vicente R. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. Hum Mol Genet. 2010; 19:111-21.10.1093/hmg/ddp47119819884
  83. 83. Van Eerdewegh P, Little RD, Dupuis J, Del Mastro RG, Falls K, Simon J, et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature. 2002; 418:426-30.10.1038/nature0087812110844
  84. 84. Allen M, Heinzmann A, Noguchi E, Abecasis G, Broxholme J, Ponting CP, et al. Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nat Genet. 2003; 35:258-63.10.1038/ng125614566338
  85. 85. Laitinen T, Polvi A, Rydman P, Vendelin J, Pulkkinen V, Salmikangas P, et al. Characterization of a common susceptibility locus for asthma-related traits. Science. 2004; 304:300-4.10.1126/science.109001015073379
  86. 86. Zhang Y, Leaves NI, Anderson GG, Ponting CP, Broxholme J, Holt R, et al. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat Genet. 2003; 34:181-6.10.1038/ng116612754510
  87. 87. Nicolae D, Cox NJ, Lester LA, Schneider D, Tan Z, Billstrand C, et al. Fine mapping and positional candidate studies identify HLA-G as an asthma susceptibility gene on chromosome 6p21. Am J Hum Genet. 2005; 76:349-57.10.1086/427763119638015611928
  88. 88. Putra AC, Tanimoto K, Arifin M, Antariksa B, Hiyama K. Genetic variations in detoxification enzymes and HIF-1alpha in Japanese patients with COPD. Clin Respir J. 2011. DOI: 10.1111/j.1752-699X.2011.00255.x10.1111/j.1752-699X.2011.00255.x21651746
  89. 89. Smolonska J, Wijmenga C, Postma DS, Boezen HM. Meta-analyses on suspected chronic obstructive pulmonary disease genes: a summary of 20 years’ research. Am J Respir Crit Care Med. 2009; 180: 618-31.10.1164/rccm.200905-0722OC19608716
  90. 90. Sapey E, Wood AM, Ahmad A, Stockley RA. Tumor necrosis factor-{alpha} rs361525 polymorphism is associated with increased local production and downstream inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010; 182:192-9.10.1164/rccm.200912-1846OC20299531
  91. 91. van Moorsel CH, van Oosterhout MF, Barlo NP, de Jong PA, van der Vis JJ, Ruven HJ, et al. Surfactant protein C mutations are the basis of a significant portion of adult familial pulmonary fibrosis in a dutch cohort. Am J Respir Crit Care Med. 2010; 182:1419-25.10.1164/rccm.200906-0953OC20656946
  92. 92. Pantelidis P, Fanning GC, Wells AU, Welsh KI, Du Bois RM. Analysis of tumor necrosis factor-alpha, lymphotoxin-alpha, tumor necrosis factor receptor II, and interleukin-6 polymorphisms in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2001; 163:1432-6.10.1164/ajrccm.163.6.200606411371414
  93. 93. Morrison CD, Papp AC, Hejmanowski AQ, Addis VM, Prior TW. Increased D allele frequency of the angiotensin-converting enzyme gene in pulmonary fibrosis. Hum Pathol. 2001; 32:521-8.10.1053/hupa.2001.2432111381371
  94. 94. Grutters JC, du Bois RM. Genetics of fibrosing lung diseases. Eur Respir J. 2005; 25:915-27.10.1183/09031936.05.0013340415863652
  95. 95. Shi X, Zhou S, Wang Z, Zhou Z. CYP1A1 and GSTM1 polymorphisms and lung cancer risk in Chinese populations: a meta-analysis. Lung Cancer. 2008; 59: 155-63.10.1016/j.lungcan.2007.08.00417900751
  96. 96. Lee KM, Kang D, Clapper ML, Ingelman-Sundberg M, Ono-Kihara M, Kiyohara C, et al. CYP1A1, GSTM1, and GSTT1 polymorphisms, smoking, and lung cancer risk in a pooled analysis among Asian populations. Cancer Epidemiol Biomarkers Prev. 2008; 17:1120-6.10.1158/1055-9965.EPI-07-278618463401
  97. 97. Gresner P, Gromadzinska J, Wasowicz W. Polymorphism of selected enzymes involved in detoxification and biotransformation in relation to lung cancer. Lung Cancer. 2007; 57:1-25.10.1016/j.lungcan.2007.02.00217337085
  98. 98. Li X, Hu Z, Qu X, Zhu J, Li L, Ring BZ, et al. Putative EPHX1 Enzyme Activity Is Related with Risk of Lung and Upper Aerodigestive Tract Cancers: A Comprehensive Meta-Analysis. PLoS One. 2011; 6:e14749.10.1371/journal.pone.0014749306080921445251
  99. 99. Taioli E, Benhamou S, Bouchardy C, Cascorbi I, Cajas-Salazar N, Dally H, et al. Myeloperoxidase G-463A polymorphism and lung cancer: a HuGE genetic susceptibility to environmental carcinogens pooled analysis. Genet Med. 2007; 9:67-73.10.1097/GIM.0b013e31803068b117304047
  100. 100. Okazaki I, Sugita M, Matsuki H, Billah SM, Watanabe T. Additional candidates to conventional genes susceptible for lung cancer and changing trend in Japan. Oncol Rep. 2010; 23:1493-500.10.3892/or_0000078820428802
  101. 101. Chao C, Zhang ZF, Berthiller J, Boffetta P, Hashibe M. NAD(P)H:quinone oxidoreductase 1 (NQO1) Pro187Ser polymorphism and the risk of lung, bladder, and colorectal cancers: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006; 15:979-87.10.1158/1055-9965.EPI-05-089916702380
  102. 102. Langevin SM, Ioannidis JP, Vineis P, Taioli E. Assessment of cumulative evidence for the association between glutathione S-transferase polymorphisms and lung cancer: application of the Venice interim guidelines. Pharmacogenet Genomics. 2010; 20:586-97.10.1097/FPC.0b013e32833c3892294099220729793
  103. 103.Wang Y, Yang H, Li L, Wang H. Glutathione Stransferase T1 gene deletion polymorphism and lung cancer risk in Chinese population: a meta-analysis. Cancer Epidemiol. 2010; 34:593-7.10.1016/j.canep.2010.05.00820542754
  104. 104. Ye Z, Song H, Higgins JP, Pharoah P, Danesh J. Five glutathione s-transferase gene variants in 23,452 cases of lung cancer and 30,397 controls: meta-analysis of 130 studies. PLoS Med. 2006; 3:e91.10.1371/journal.pmed.0030091139198116509765
  105. 105. Miller DP, Asomaning K, Liu G, Wain JC, Lynch TJ, Neuberg D, et al. An association between glutathione S-transferase P1 gene polymorphism and younger age at onset of lung carcinoma. Cancer. 2006; 107: 1570-7.10.1002/cncr.2212416933328
  106. 106. Miller DP, De Vivo I, Neuberg D, Wain JC, Lynch TJ, Su L, et al. Association between self-reported environmental tobacco smoke exposure and lung cancer: modification by GSTP1 polymorphism. Int J Cancer. 2003; 104:758-63.10.1002/ijc.1098912640684
  107. 107. Zhang J, Gu SY, Zhang P, Jia Z, Chang JH. ERCC2 Lys751Gln polymorphism is associated with lung cancer among Caucasians. Eur J Cancer. 2010; 46: 2479-84.10.1016/j.ejca.2010.05.00820627704
  108. 108. Kiyohara C, Takayama K, Nakanishi Y. Association of genetic polymorphisms in the base excision repair pathway with lung cancer risk: a meta-analysis. Lung Cancer. 2006; 54:267-83.10.1016/j.lungcan.2006.08.00916982113
  109. 109.Wang Y, Yang H, Li H, Li L, Wang H, Liu C, et al. Association between X-ray repair cross complementing group 1 codon 399 and 194 polymorphisms and lung cancer risk: a meta-analysis. Cancer Lett. 2009; 285:134-40.10.1016/j.canlet.2009.05.00519481337
  110. 110.Wei B, Zhou Y, Xu Z, Xi B, Cheng H, Ruan J, et al. The effect of hOGG1 Ser326Cys polymorphism on cancer risk: evidence from a meta-analysis. PLoS One. 2011; 6:e27545.10.1371/journal.pone.0027545321967822114677
  111. 111. Yan L, Zhang D, Chen C, Mao Y, Xie Y, Li Y, et al. TP53 Arg72Pro polymorphism and lung cancer risk: a meta-analysis. Int J Cancer. 2009; 125:2903-11.10.1002/ijc.2460319623649
  112. 112. Dai S, Mao C, Jiang L, Wang G, Cheng H. P53 polymorphism and lung cancer susceptibility: a pooled analysis of 32 case-control studies. Hum Genet. 2009; 125:633-8.10.1007/s00439-009-0664-319357867
  113. 113. Hu Z, Li X, Qu X, He Y, Ring BZ, Song E, et al. Intron 3 16 bp duplication polymorphism of TP53 contributes to cancer susceptibility: a meta-analysis. Carcinogenesis. 2010; 31:643-7.10.1093/carcin/bgq01820089604
  114. 114. Fong KM, Sekido Y, Gazdar AF, Minna JD. Lung cancer. 9: Molecular biology of lung cancer: clinical implications. Thorax. 2003; 58:892-900.10.1136/thorax.58.10.892174648914514947
  115. 115. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008; 359:1367-80.10.1056/NEJMra080271418815398
  116. 116. Sato M, Shames DS, Gazdar AF, Minna JD. A translational view of the molecular pathogenesis of lung cancer. J Thorac Oncol. 2007; 2:327-43.10.1097/01.JTO.0000263718.69320.4c17409807
  117. 117. Minna JD, Fong K, Zochbauer-Muller S, Gazdar AF. Molecular pathogenesis of lung cancer and potential translational applications. Cancer J. 2002; 8 Suppl 1: S41-6.
  118. 118. Hiyama K, Hiyama E. Detection of telomerase activity in lung cancer tissues. Methods Mol Med. 2003; 74: 401-12.
DOI: https://doi.org/10.5372/1905-7415.0605.104 | Journal eISSN: 1875-855X | Journal ISSN: 1905-7415
Language: English
Page range: 639 - 651
Published on: Feb 4, 2017
Published by: Chulalongkorn University
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2017 Andika C. Putra, Keiji Tanimoto, Elisna Syahruddin, Sita Andarini, Yoshio Hosoi, Keiko Hiyama, published by Chulalongkorn University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.