References
- 1Kumar KR, Cowley MJ, Davis RL. Next-generation sequencing and emerging technologies. Semin Thromb Hemost. 2019; 45(7): 661–73. DOI: 10.1055/s-0039-1688446
- 2Jia F, Fellner A, Kumar KR. Monogenic Parkinson’s disease: genotype, phenotype, pathophysiology, and genetic testing. Genes (Basel). 2022; 13(3). DOI: 10.3390/genes13030471
- 3Krygier M, Mazurkiewicz-Beldzinska M. Milestones in genetics of cerebellar ataxias. Neurogenetics. 2021; 22(4): 225–34. DOI: 10.1007/s10048-021-00656-3
- 4Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, et al. Nomenclature of genetic movement disorders: recommendations of the International Parkinson and Movement Disorder Society Task Force – an update. Mov Disord. 2022; 37(5): 905–35. DOI: 10.1002/mds.28982
- 5Mallett A, Stark Z, Fehlberg Z, Best S, Goranitis I. Determining the utility of diagnostic genomics: a conceptual framework. Hum Genomics. 2023; 17(1): 75. DOI: 10.1186/s40246-023-00524-1
- 6Smith HS, Morain SR, Robinson JO, Canfield I, Malek J, Rubanovich CK, et al. Perceived utility of genomic sequencing: qualitative analysis and synthesis of a conceptual model to inform patient-centered instrument development. Patient. 2022; 15(3): 317–28. DOI: 10.1007/s40271-021-00558-4
- 7Hayeems RZ, Luca S, Ungar WJ, Bhatt A, Chad L, Pullenayegum E, et al. The development of the Clinician-reported Genetic testing Utility InDEx (C-GUIDE): a novel strategy for measuring the clinical utility of genetic testing. Genet Med. 2020; 22(1): 95–101. DOI: 10.1038/s41436-019-0620-0
- 8Strande NT, Berg JS. Defining the clinical value of a genomic diagnosis in the era of next-generation sequencing. Annu Rev Genomics Hum Genet. 2016; 17: 303–32. DOI: 10.1146/annurev-genom-083115-022348
- 9Gorcenco S, Ilinca A, Almasoudi W, Kafantari E, Lindgren AG, Puschmann A. New generation genetic testing entering the clinic. Parkinsonism Relat Disord. 2020; 73: 72–84. DOI: 10.1016/j.parkreldis.2020.02.015
- 10Subramony SH, Burns M, Kugelmann EL, Zingariello CD. Inherited ataxias in children. Pediatr Neurol. 2022; 131: 54–62. DOI: 10.1016/j.pediatrneurol.2022.04.004
- 11Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020; 19(2): 170–8. DOI: 10.1016/S1474-4422(19)30287-X
- 12Charlesworth G, Bhatia KP, Wood NW. The genetics of dystonia: new twists in an old tale. Brain. 2013; 136(Pt 7): 2017–37. DOI: 10.1093/brain/awt138
- 13van Egmond ME, Lagrand TJ, Lizaitiene G, Smit M, Tijssen MAJ. A novel diagnostic approach for patients with adult-onset dystonia. J Neurol Neurosurg Psychiatry. 2022; 93(10): 1039–48. DOI: 10.1136/jnnp-2021-328120
- 14de Silva RN, Vallortigara J, Greenfield J, Hunt B, Giunti P, Hadjivassiliou M. Diagnosis and management of progressive ataxia in adults. Pract Neurol. 2019; 19(3): 196–207. DOI: 10.1136/practneurol-2018-002096
- 15Zech M, Jech R, Boesch S, Skorvanek M, Weber S, Wagner M, et al. Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurol. 2020; 19(11): 908–18. DOI: 10.1016/S1474-4422(20)30312-4
- 16Wu MC, Chang YY, Lan MY, Chen YF, Tai CH, Lin YF, et al. A clinical and integrated genetic study of isolated and combined dystonia in Taiwan. J Mol Diagn. 2022; 24(3): 262–73. DOI: 10.1016/j.jmoldx.2021.12.003
- 17Hadjivassiliou M, Martindale J, Shanmugarajah P, Grunewald RA, Sarrigiannis PG, Beauchamp N, et al. Causes of progressive cerebellar ataxia: prospective evaluation of 1500 patients. J Neurol Neurosurg Psychiatry. 2017; 88(4): 301–9. DOI: 10.1136/jnnp-2016-314863
- 18Nemeth AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EB, Bera KD, et al. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain. 2013; 136(Pt 10): 3106–18. DOI: 10.1093/brain/awt236
- 19Sun YM, Zhou XY, Liang XN, Lin JR, Xu YD, Chen C, et al. The genetic spectrum of a cohort of patients clinically diagnosed as Parkinson’s disease in mainland China. NPJ Parkinsons Dis. 2023; 9(1): 76. DOI: 10.1038/s41531-023-00518-9
- 20Hua P, Zhao Y, Zeng Q, Li L, Ren J, Guo J, et al. Genetic analysis of patients with early-onset Parkinson’s disease in eastern China. Front Aging Neurosci. 2022; 14: 849462. DOI: 10.3389/fnagi.2022.849462
- 21Ibanez K, Polke J, Hagelstrom RT, Dolzhenko E, Pasko D, Thomas ERA, et al. Whole genome sequencing for the diagnosis of neurological repeat expansion disorders in the UK: a retrospective diagnostic accuracy and prospective clinical validation study. Lancet Neurol. 2022; 21(3): 234–45. DOI: 10.1016/S1474-4422(21)00462-2
- 22Lin X, Yang Y, Melton PE, Singh V, Simpson-Yap S, Burdon KP, et al. Integrating genetic structural variations and whole-genome sequencing into clinical neurology. Neurol Genet. 2022; 8(4):
e200005 . DOI: 10.1212/NXG.0000000000200005 - 23Kim A, Kumar KR, Davis RL, Mallawaarachchi AC, Gayevskiy V, Minoche AE, et al. Increased diagnostic yield of spastic paraplegia with or without cerebellar ataxia through whole-genome sequencing. Cerebellum. 2019; 18(4): 781–90. DOI: 10.1007/s12311-019-01038-0
- 24Kumar KR, Davis RL, Tchan MC, Wali GM, Mahant N, Ng K, et al. Whole genome sequencing for the genetic diagnosis of heterogenous dystonia phenotypes. Parkinsonism Relat Disord. 2019; 69: 111–8. DOI: 10.1016/j.parkreldis.2019.11.004
- 25Palmer EE, Sachdev R, Macintosh R, Melo US, Mundlos S, Righetti S, et al. Diagnostic yield of whole genome sequencing after nondiagnostic exome sequencing or gene panel in developmental and epileptic encephalopathies. Neurology. 2021; 96(13): e1770–e82. DOI: 10.1212/WNL.0000000000011655
- 26Ewans LJ, Minoche AE, Schofield D, Shrestha R, Puttick C, Zhu Y, et al. Whole exome and genome sequencing in mendelian disorders: a diagnostic and health economic analysis. Eur J Hum Genet. 2022; 30(10): 1121–31. DOI: 10.1038/s41431-022-01162-2
- 27Ngo KJ, Rexach JE, Lee H, Petty LE, Perlman S, Valera JM, et al. A diagnostic ceiling for exome sequencing in cerebellar ataxia and related neurological disorders. Hum Mutat. 2020; 41(2): 487–501. DOI: 10.1002/humu.23946
- 28Zech M, Boesch S, Skorvanek M, Necpal J, Svantnerova J, Wagner M, et al. Clinically relevant copy-number variants in exome sequencing data of patients with dystonia. Parkinsonism Relat Disord. 2021; 84: 129–34. DOI: 10.1016/j.parkreldis.2021.02.013
- 29van Egmond ME, Lugtenberg CHA, Brouwer OF, Contarino MF, Fung VSC, Heiner-Fokkema MR, et al. A post hoc study on gene panel analysis for the diagnosis of dystonia. Mov Disord. 2017; 32(4): 569–75. DOI: 10.1002/mds.26937
- 30Lanore A, Casse F, Tesson C, Courtin T, Menon PJ, Sambin S, et al. Differences in survival across monogenic forms of Parkinson’s disease. Ann Neurol. 2023; 94(1): 123–32. DOI: 10.1002/ana.26636
- 31Verhagen MM, Last JI, Hogervorst FB, Smeets DF, Roeleveld N, Verheijen F, et al. Presence of ATM protein and residual kinase activity correlates with the phenotype in ataxia-telangiectasia: a genotype-phenotype study. Hum Mutat. 2012; 33(3): 561–71. DOI: 10.1002/humu.22016
- 32Langbehn DR, Registry Investigators of the European Huntington Disease N. Longer CAG repeat length is associated with shorter survival after disease onset in Huntington disease. Am J Hum Genet. 2022; 109(1): 172–9. DOI: 10.1016/j.ajhg.2021.12.002
- 33Scriba CK, Beecroft SJ, Clayton JS, Cortese A, Sullivan R, Yau WY, et al. A novel RFC1 repeat motif (ACAGG) in two Asia-Pacific CANVAS families. Brain. 2020; 143(10): 2904–10. DOI: 10.1093/brain/awaa263
- 34McFarland KN, Liu J, Landrian I, Zeng D, Raskin S, Moscovich M, et al. Repeat interruptions in spinocerebellar ataxia type 10 expansions are strongly associated with epileptic seizures. Neurogenetics. 2014; 15(1): 59–64. DOI: 10.1007/s10048-013-0385-6
- 35Wright GEB, Collins JA, Kay C, McDonald C, Dolzhenko E, Xia Q, et al. Length of uninterrupted CAG, independent of polyglutamine size, results in increased somatic instability, hastening onset of Huntington disease. Am J Hum Genet. 2019; 104(6): 1116–26. DOI: 10.1016/j.ajhg.2019.04.007
- 36Stevanovski I, Chintalaphani SR, Gamaarachchi H, Ferguson JM, Pineda SS, Scriba CK, et al. Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Sci Adv. 2022; 8(9):
eabm5386 . DOI: 10.1126/sciadv.abm5386 - 37Trinh J, Luth T, Schaake S, Laabs BH, Schluter K, Labeta J, et al. Mosaic divergent repeat interruptions in XDP influence repeat stability and disease onset. Brain. 2023; 146(3): 1075–82. DOI: 10.1093/brain/awac160
- 38Paul KC, Schulz J, Bronstein JM, Lill CM, Ritz BR. Association of polygenic risk score with cognitive decline and motor progression in Parkinson disease. JAMA Neurol. 2018; 75(3): 360–6. DOI: 10.1001/jamaneurol.2017.4206
- 39Dehestani M, Liu H, Gasser T. Polygenic risk scores contribute to personalized medicine of Parkinson’s disease. J Pers Med. 2021; 11(10). DOI: 10.3390/jpm11101030
- 40Maloney KA, Alaeddin DS, von Coelln R, Dixon S, Shulman LM, Schrader K, et al. Parkinson’s disease: patients’ knowledge, attitudes, and interest in genetic counseling. J Genet Couns. 2018; 27(5): 1200–9. DOI: 10.1007/s10897-018-0239-3
- 41Sakanaka K, Waters CH, Levy OA, Louis ED, Chung WK, Marder KS, et al. Knowledge of and interest in genetic results among Parkinson disease patients and caregivers. J Genet Couns. 2014; 23(1): 114–20. DOI: 10.1007/s10897-013-9618-y
- 42Hill EJ, Robak LA, Al-Ouran R, Deger J, Fong JC, Vandeventer PJ, et al. Genome sequencing in the Parkinson disease clinic. Neurol Genet. 2022; 8(4):
e200002 . DOI: 10.1212/NXG.0000000000200002 - 43Meneret A, Garcin B, Frismand S, Lannuzel A, Mariani LL, Roze E. Treatable hyperkinetic movement disorders not to be missed. Front Neurol. 2021; 12: 659805. DOI: 10.3389/fneur.2021.659805
- 44Jinnah HA, Albanese A, Bhatia KP, Cardoso F, Da Prat G, de Koning TJ, et al. Treatable inherited rare movement disorders. Mov Disord. 2018; 33(1): 21–35. DOI: 10.1002/mds.27140
- 45Ebrahimi-Fakhari D, Van Karnebeek C, Munchau A. Movement disorders in treatable inborn errors of metabolism. Mov Disord. 2019; 34(5): 598–613. DOI: 10.1002/mds.27568
- 46Stezin A, Pal PK. Treatable ataxias: how to find the needle in the haystack? J Mov Disord. 2022; 15(3): 206–26. DOI: 10.14802/jmd.22069
- 47Wilke C, Pellerin D, Mengel D, Traschutz A, Danzi MC, Dicaire MJ, et al. GAA-FGF14 ataxia (SCA27B): phenotypic profile, natural history progression and 4-aminopyridine treatment response. Brain. 2023; 146(10): 4144–57. DOI: 10.1093/brain/awad157
- 48Pellerin D, Danzi MC, Wilke C, Renaud M, Fazal S, Dicaire MJ, et al. Deep intronic FGF14 GAA repeat expansion in late-onset cerebellar ataxia. N Engl J Med. 2023; 388(2): 128–41. DOI: 10.1056/NEJMoa2207406
- 49Meneret A, Gras D, McGovern E, Roze E. Caffeine and the dyskinesia related to mutations in the ADCY5 gene. Ann Intern Med. 2019; 171(6): 439. DOI: 10.7326/L19-0038
- 50Lynch DR, Chin MP, Delatycki MB, Subramony SH, Corti M, Hoyle JC, et al. Safety and efficacy of omaveloxolone in Friedreich ataxia (MOXIe study). Ann Neurol. 2021; 89(2): 212–25. DOI: 10.1002/ana.25934
- 51Liu JS, Chen Y, Shi DD, Zhang BR, Pu JL. Pharmacogenomics-a new frontier for individualized treatment of Parkinson’s disease. Curr Neuropharmacol. 2023; 21(3): 536–46. DOI: 10.2174/1570159X21666221229154830
- 52Chan GH. The role of genetic data in selecting device-aided therapies in patients with advanced Parkinson’s disease: a mini-review. Front Aging Neurosci. 2022; 14: 895430. DOI: 10.3389/fnagi.2022.895430
- 53Pal G, Mangone G, Hill EJ, Ouyang B, Liu Y, Lythe V, et al. Parkinson disease and subthalamic nucleus deep brain stimulation: cognitive effects in GBA mutation carriers. Ann Neurol. 2022; 91(3): 424–35. DOI: 10.1002/ana.26302
- 54Mangone G, Bekadar S, Cormier-Dequaire F, Tahiri K, Welaratne A, Czernecki V, et al. Early cognitive decline after bilateral subthalamic deep brain stimulation in Parkinson’s disease patients with GBA mutations. Parkinsonism Relat Disord. 2020; 76: 56–62. DOI: 10.1016/j.parkreldis.2020.04.002
- 55Avenali M, Zangaglia R, Cuconato G, Palmieri I, Albanese A, Artusi CA, et al. Are patients with GBA-Parkinson disease good candidates for deep brain stimulation? A longitudinal multicentric study on a large Italian cohort. J Neurol Neurosurg Psychiatry; 2023. DOI: 10.1136/jnnp-2023-332387
- 56Tisch S, Kumar KR. Pallidal deep brain stimulation for monogenic dystonia: the effect of gene on outcome. Front Neurol. 2020; 11: 630391. DOI: 10.3389/fneur.2020.630391
- 57Albanese A. Deep brain stimulation in dystonia: disentangling heterogeneity. Mov Disord Clin Pract. 2021; 8(1): 6–8. DOI: 10.1002/mdc3.13113
- 58Artusi CA, Dwivedi A, Romagnolo A, Bortolani S, Marsili L, Imbalzano G, et al. Differential response to pallidal deep brain stimulation among monogenic dystonias: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2020; 91(4): 426–33. DOI: 10.1136/jnnp-2019-322169
- 59Albanese A, Di Giovanni M, Amami P, Lalli S. Failure of pallidal deep brain stimulation in DYT12-ATP1A3 dystonia. Parkinsonism Relat Disord. 2017; 45: 99–100. DOI: 10.1016/j.parkreldis.2017.09.008
- 60Fearon C, McKinley J, McCarthy A, Rebelo P, Goggin C, Magennis B, et al. Failure of sequential pallidal and motor thalamus DBS for rapid-onset dystonia-parkinsonism (DYT12). Mov Disord Clin Pract. 2018; 5(4): 444–5. DOI: 10.1002/mdc3.12559
- 61Weber J, Piroth T, Rijntjes M, Jung B, Reinacher PC, Weiller C, et al. Atypical presentation of rapid-onset dystonia-parkinsonism (DYT12) unresponsive to deep brain stimulation of the subthalamic nucleus. Mov Disord Clin Pract. 2018; 5(4): 427–9. DOI: 10.1002/mdc3.12605
- 62Wang KL, Li JP, Shan YZ, Zhao GG, Ma JH, Ramirez-Zamora A, et al. Centromedian-parafascicular complex deep brain stimulation improves motor symptoms in rapid onset dystonia-parkinsonism (DYT12-ATP1A3). Brain Stimul. 2023; 16(5): 1310–2. DOI: 10.1016/j.brs.2023.08.021
- 63Zuniga-Ramirez C, Kramis-Hollands M, Mercado-Pimentel R, Gonzalez-Usigli HA, Saenz-Farret M, Soto-Escageda A, et al. Generalized dystonia and paroxysmal Dystonic attacks due to a novel ATP1A3 variant. Tremor Other Hyperkinet Mov (N Y). 2019; 9. DOI: 10.5334/tohm.490
- 64Gabsi S, Gouider-Khouja N, Belal S, Fki M, Kefi M, Turki I, et al. Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol. 2001; 8(5): 477–81. DOI: 10.1046/j.1468-1331.2001.00273.x
- 65Friedman JR, Thiele EA, Wang D, Levine KB, Cloherty EK, Pfeifer HH, et al. Atypical GLUT1 deficiency with prominent movement disorder responsive to ketogenic diet. Mov Disord. 2006; 21(2): 241–5. DOI: 10.1002/mds.20660
- 66Leen WG, Taher M, Verbeek MM, Kamsteeg EJ, van de Warrenburg BP, Willemsen MA. GLUT1 deficiency syndrome into adulthood: a follow-up study. J Neurol. 2014; 261(3): 589–99. DOI: 10.1007/s00415-014-7240-z
- 67Merola A, Kobayashi N, Romagnolo A, Wright BA, Artusi CA, Imbalzano G, et al. Gene therapy in movement disorders: a systematic review of ongoing and completed clinical trials. Front Neurol. 2021; 12: 648532. DOI: 10.3389/fneur.2021.648532
- 68Tai CH, Lee NC, Chien YH, Byrne BJ, Muramatsu SI, Tseng SH, et al. Long-term efficacy and safety of eladocagene exuparvovec in patients with AADC deficiency. Mol Ther. 2022; 30(2): 509–18. DOI: 10.1016/j.ymthe.2021.11.005
- 69Stewart JD, Horvath R, Baruffini E, Ferrero I, Bulst S, Watkins PB, et al. Polymerase gamma gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology. 2010; 52(5): 1791–6. DOI: 10.1002/hep.23891
- 70Barbano RL, Hill DF, Snively BM, Light LS, Boggs N, McCall WV, et al. New triggers and non-motor findings in a family with rapid-onset dystonia-parkinsonism. Parkinsonism Relat Disord. 2012; 18(6): 737–41. DOI: 10.1016/j.parkreldis.2012.03.020
- 71Tadic V, Kasten M, Bruggemann N, Stiller S, Hagenah J, Klein C. Dopa-responsive dystonia revisited: diagnostic delay, residual signs, and nonmotor signs. Arch Neurol. 2012; 69(12): 1558–62. DOI: 10.1001/archneurol.2012.574
- 72Kumar KR, Cortese A, Tomlinson SE, Efthymiou S, Ellis M, Zhu D, et al. RFC1 expansions can mimic hereditary sensory neuropathy with cough and Sjogren syndrome. Brain. 2020; 143(10):
e82 . DOI: 10.1093/brain/awaa244 - 73Bae JH, Jeong HB, Kim HR, Song KS, Park ST, Ahn SW. A case of HSP carrying c.1537–11A > G mutation of the SPAST gene presented as stiff-person syndrome. Neurol India. 2021; 69(4): 1053–4. DOI: 10.4103/0028-3886.325344
- 74Fernandez-Eulate G, Debs R, Maisonobe T, Latour P, Cohen-Aubart F, Saadoun D, et al. Sjogren syndrome and RFC1-CANVAS sensory ganglionopathy: co-occurrence or misdiagnosis? J Neurol. 2023; 270(1): 460–5. DOI: 10.1007/s00415-022-11382-7
- 75Hirano M, Kuwahara M, Yamagishi Y, Samukawa M, Fujii K, Yamashita S, et al. CANVAS-related RFC1 mutations in patients with immune-mediated neuropathy. Sci Rep. 2023; 13(1): 17801. DOI: 10.1038/s41598-023-45011-8
- 76Giannoccaro MP, Matteo E, Bartiromo F, Tonon C, Santorelli FM, Liguori R, et al. Multiple sclerosis in patients with hereditary spastic paraplegia: a case report and systematic review. Neurol Sci. 2022; 43(9): 5501–11. DOI: 10.1007/s10072-022-06145-1
- 77Kwong AK, Tsang MH, Fung JL, Mak CC, Chan KL, Rodenburg RJT, et al. Exome sequencing in paediatric patients with movement disorders. Orphanet J Rare Dis. 2021; 16(1): 32. DOI: 10.1186/s13023-021-01688-6
- 78Cordeiro D, Bullivant G, Siriwardena K, Evans A, Kobayashi J, Cohn RD, et al. Genetic landscape of pediatric movement disorders and management implications. Neurol Genet. 2018; 4(5):
e265 . DOI: 10.1212/NXG.0000000000000265 - 79Pierron L, Tezenas du Montcel S, Heinzmann A, Coarelli G, Heron D, Heide S, et al. Reproductive choices and intrafamilial communication in neurogenetic diseases with different self-estimated severities. J Med Genet. 2023; 60(4): 346–51. DOI: 10.1136/jmg-2022-108477
- 80Mendes A, Sequeiros J, Clarke AJ. Between responsibility and desire: accounts of reproductive decisions from those at risk for or affected by late-onset neurological diseases. J Genet Couns. 2021; 30(5): 1480–90. DOI: 10.1002/jgc4.1415
- 81Fahy N, Rice C, Lahiri N, Desai R, Stott J. Genetic risk for Huntington disease and reproductive decision-making: a systematic review. Clin Genet. 2023; 104(2): 147–62. DOI: 10.1111/cge.14345
- 82Cahn S, Rosen A, Wilmot G. Spinocerebellar ataxia patient perceptions regarding reproductive options. Mov Disord Clin Pract. 2020; 7(1): 37–44. DOI: 10.1002/mdc3.12859
- 83Gorman GS, McFarland R, Stewart J, Feeney C, Turnbull DM. Mitochondrial donation: from test tube to clinic. Lancet. 2018; 392(10154): 1191–2. DOI: 10.1016/S0140-6736(18)31868-3
- 84Gong P, Fanos JH, Korty L, Siskind CE, Hanson-Kahn AK. Impact of Huntington disease gene-positive status on pre-symptomatic young adults and recommendations for genetic counselors. J Genet Couns. 2016; 25(6): 1188–97. DOI: 10.1007/s10897-016-9951-z
- 85Vears DF, Ayres S, Boyle J, Mansour J, Newson AJ, Education E, et al. Human Genetics Society of Australasia position statement: predictive and presymptomatic genetic testing in adults and children. Twin Res Hum Genet. 2020; 23(3): 184–9. DOI: 10.1017/thg.2020.51
- 86Andorno R. The right not to know: an autonomy based approach. J Med Ethics. 2004; 30(5): 435–9; discussion 9–40. DOI: 10.1136/jme.2002.001578
- 87Lowry KP, Geuzinge HA, Stout NK, Alagoz O, Hampton J, Kerlikowske K, et al. Breast cancer screening strategies for women with ATM, CHEK2, and PALB2 pathogenic variants: a comparative modeling analysis. JAMA Oncol. 2022; 8(4): 587–96. DOI: 10.1001/jamaoncol.2021.6204
- 88Taber JM, Peters E, Klein WMP, Cameron LD, Turbitt E, Biesecker BB. Motivations to learn genomic information are not exceptional: lessons from behavioral science. Clin Genet. 2023; 104(4): 397–405. DOI: 10.1111/cge.14401
- 89Goranitis I, Best S, Stark Z, Boughtwood T, Christodoulou J. The value of genomic sequencing in complex pediatric neurological disorders: a discrete choice experiment. Genet Med. 2021; 23(1): 155–62. DOI: 10.1038/s41436-020-00949-2
- 90Marshall DA, MacDonald KV, Heidenreich S, Hartley T, Bernier FP, Gillespie MK, et al. The value of diagnostic testing for parents of children with rare genetic diseases. Genet Med. 2019; 21(12): 2798–806. DOI: 10.1038/s41436-019-0583-1
- 91Goranitis I, Best S, Christodoulou J, Stark Z, Boughtwood T. The personal utility and uptake of genomic sequencing in pediatric and adult conditions: eliciting societal preferences with three discrete choice experiments. Genet Med. 2020; 22(8): 1311–9. DOI: 10.1038/s41436-020-0809-2
- 92Bertier G, Hetu M, Joly Y. Unsolved challenges of clinical whole-exome sequencing: a systematic literature review of end-users’ views. BMC Med Genomics. 2016; 9(1): 52. DOI: 10.1186/s12920-016-0213-6
- 93Foo JN, Liu J, Tan EK. Next-generation sequencing diagnostics for neurological diseases/disorders: from a clinical perspective. Hum Genet. 2013; 132(7): 721–34. DOI: 10.1007/s00439-013-1287-2
- 94Barseghyan H, Pang AWC, Zhang Y, Sahajpal NS, Delpu Y, Lai C-YJ, et al.
Neurogenetic variant analysis by optical genome mapping for structural variation detection-balanced genomic rearrangements, copy number variants, and repeat expansions/contractions . In: Proukakis C, (ed.), Genomic Structural Variants in Nervous System Disorders. New York, NY: Springer US; 2022. p. 155–72. DOI: 10.1007/978-1-0716-2357-2_9 - 95Su Y, Fan L, Shi C, Wang T, Zheng H, Luo H, et al. Deciphering neurodegenerative diseases using long-read sequencing. Neurology. 2021; 97(9): 423–33. DOI: 10.1212/WNL.0000000000012466
- 96Rafehi H, Read J, Szmulewicz DJ, Davies KC, Snell P, Fearnley LG, et al. An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA50/ATX-FGF14. Am J Hum Genet. 2023; 110(1): 105–19. DOI: 10.1016/j.ajhg.2022.11.015
- 97Ishiura H, Doi K, Mitsui J, Yoshimura J, Matsukawa MK, Fujiyama A, et al. Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat Genet. 2018; 50(4): 581–90. DOI: 10.1038/s41588-018-0067-2
- 98Florian RT, Kraft F, Leitao E, Kaya S, Klebe S, Magnin E, et al. Unstable TTTTA/TTTCA expansions in MARCH6 are associated with familial adult myoclonic epilepsy type 3. Nat Commun. 2019; 10(1): 4919. DOI: 10.1038/s41467-019-12763-9
- 99Clift K, Macklin S, Halverson C, McCormick JB, Abu Dabrh AM, Hines S. Patients’ views on variants of uncertain significance across indications. J Community Genet. 2020; 11(2): 139–45. DOI: 10.1007/s12687-019-00434-7
- 100Weile J, Roth FP. Multiplexed assays of variant effects contribute to a growing genotype-phenotype atlas. Hum Genet. 2018; 137(9): 665–78. DOI: 10.1007/s00439-018-1916-x
- 101Beecroft SJ, Lamont PJ, Edwards S, Goullee H, Davis MR, Laing NG, et al. The Impact of next-generation sequencing on the diagnosis, treatment, and prevention of hereditary neuromuscular disorders. Mol Diagn Ther. 2020; 24(6): 641–52. DOI: 10.1007/s40291-020-00495-2
- 102Saunders-Pullman R, Raymond D, Ortega RA, Shalash A, Gatto E, Salari M, et al. International genetic testing and counseling practices for Parkinson’s disease. Mov Disord. 2023; 38(8): 1527–35. DOI: 10.1002/mds.29442
- 103Gatto EM, Walker RH, Gonzalez C, Cesarini M, Cossu G, Stephen CD, et al. Worldwide barriers to genetic testing for movement disorders. Eur J Neurol. 2021; 28(6): 1901–9. DOI: 10.1111/ene.14826
- 104Alcalay RN, Kehoe C, Shorr E, Battista R, Hall A, Simuni T, et al. Genetic testing for Parkinson disease: current practice, knowledge, and attitudes among US and Canadian movement disorders specialists. Genet Med. 2020; 22(3): 574–80. DOI: 10.1038/s41436-019-0684-x
- 105Global Parkinson’s Genetics Program. GP2: the global Parkinson’s genetics program. Mov Disord. 2021; 36(4): 842–51. DOI: 10.1002/mds.28494
- 106Wan Z, Hazel JW, Clayton EW, Vorobeychik Y, Kantarcioglu M, Malin BA. Sociotechnical safeguards for genomic data privacy. Nat Rev Genet. 2022; 23(7): 429–45. DOI: 10.1038/s41576-022-00455-y
- 107Martinez-Martin N, Magnus D. Privacy and ethical challenges in next-generation sequencing. Expert Rev Precis Med Drug Dev. 2019; 4(2): 95–104. DOI: 10.1080/23808993.2019.1599685
- 108Tan EK, Lee J, Hunter C, Shinawi L, Fook-Chong S, Jankovic J. Comparing knowledge and attitudes towards genetic testing in Parkinson’s disease in an American and Asian population. J Neurol Sci. 2007; 252(2): 113–20. DOI: 10.1016/j.jns.2006.10.016
- 109Green RC, Lautenbach D, McGuire AL. GINA, genetic discrimination, and genomic medicine. N Engl J Med. 2015; 372(5): 397–9. DOI: 10.1056/NEJMp1404776
- 110Tiller J, Bakshi A, Dowling G, Keogh L, McInerney-Leo A, Barlow-Stewart K, et al. Community concerns about genetic discrimination in life insurance persist in Australia: A survey of consumers offered genetic testing. Eur J Hum Genet; 2023. DOI: 10.1038/s41431-023-01373-1
- 111Tiller J, Morris S, Rice T, Barter K, Riaz M, Keogh L, et al. Genetic discrimination by Australian insurance companies: a survey of consumer experiences. Eur J Hum Genet. 2020; 28(1): 108–13. DOI: 10.1038/s41431-019-0426-1
- 112Cho MK, Sankar P. Forensic genetics and ethical, legal and social implications beyond the clinic. Nat Genet. 2004; 36(11 Suppl): S8–12. DOI: 10.1038/ng1594
- 113Oliveri S, Ferrari F, Manfrinati A, Pravettoni G. A systematic review of the psychological implications of genetic testing: a comparative analysis among cardiovascular, neurodegenerative and cancer diseases. Front Genet. 2018; 9: 624. DOI: 10.3389/fgene.2018.00624
- 114Clarke AJ. Managing the ethical challenges of next-generation sequencing in genomic medicine. Br Med Bull. 2014; 111(1): 17–30. DOI: 10.1093/bmb/ldu017
- 115Kodida R, Reble E, Clausen M, Shickh S, Mighton C, Sam J, et al. A model for the return and referral of all clinically significant secondary findings of genomic sequencing. J Med Genet. 2023; 60(8): 733–9. DOI: 10.1136/jmg-2022-109091
- 116Jaitovich Groisman I, Hurlimann T, Shoham A, Godard B. Practices and views of neurologists regarding the use of whole-genome sequencing in clinical settings: a web-based survey. Eur J Hum Genet. 2017; 25(7): 801–8. DOI: 10.1038/ejhg.2017.64
- 117Eratne D, Schneider A, Lynch E, Martyn M, Velakoulis D, Fahey M, et al. The clinical utility of exome sequencing and extended bioinformatic analyses in adolescents and adults with a broad range of neurological phenotypes: an Australian perspective. J Neurol Sci. 2021; 420: 117260. DOI: 10.1016/j.jns.2020.117260
- 118Benkirane M, Marelli C, Guissart C, Roubertie A, Ollagnon E, Choumert A, et al. High rate of hypomorphic variants as the cause of inherited ataxia and related diseases: study of a cohort of 366 families. Genet Med. 2021; 23(11): 2160–70. DOI: 10.1038/s41436-021-01250-6
- 119Galatolo D, De Michele G, Silvestri G, Leuzzi V, Casali C, Musumeci O, et al. NGS in hereditary ataxia: when rare becomes frequent. Int J Mol Sci. 2021; 22(16). DOI: 10.3390/ijms22168490
- 120Balakrishnan S, Aggarwal S, Muthulakshmi M, Meena AK, Borgohain R, Mridula KR, et al. Clinical and molecular spectrum of degenerative cerebellar ataxia: a single centre study. Neurol India. 2022; 70(3): 934–42. DOI: 10.4103/0028-3886.349660
- 121Radziwonik W, Elert-Dobkowska E, Klimkowicz-Mrowiec A, Ziora-Jakutowicz K, Stepniak I, Zaremba J, et al. Application of a custom NGS gene panel revealed a high diagnostic utility for molecular testing of hereditary ataxias. J Appl Genet. 2022; 63(3): 513–25. DOI: 10.1007/s13353-022-00701-3
- 122da Graca FF, Peluzzo TM, Bonadia LC, Martinez ARM, Diniz de Lima F, Pedroso JL, et al. Diagnostic yield of whole exome sequencing for adults with ataxia: a Brazilian perspective. Cerebellum. 2022; 21(1): 49–54. DOI: 10.1007/s12311-021-01268-1
- 123Ahn JH, Kim AR, Park WY, Cho JW, Park J, Youn J. Whole exome sequencing and clinical investigation of young onset dystonia: what can we learn? Parkinsonism Relat Disord. 2023; 115: 105814. DOI: 10.1016/j.parkreldis.2023.105814
- 124Li LX, Liu Y, Huang JH, Yang Y, Pan YG, Zhang XL, et al. Genetic spectrum and clinical features in a cohort of Chinese patients with isolated dystonia. Clin Genet. 2023; 103(4): 459–65. DOI: 10.1111/cge.14298
- 125Muldmaa M, Mencacci NE, Pittman A, Kadastik-Eerme L, Sikk K, Taba P, et al. Community-based genetic study of Parkinson’s disease in Estonia. Acta Neurol Scand. 2021; 143(1): 89–95. DOI: 10.1111/ane.13329
- 126Kovanda A, Racki V, Bergant G, Georgiev D, Flisar D, Papic E, et al. A multicenter study of genetic testing for Parkinson’s disease in the clinical setting. NPJ Parkinsons Dis. 2022; 8(1): 149. DOI: 10.1038/s41531-022-00408-6
- 127Do MD, Tran TN, Luong AB, Le LHG, Van Le T, Le KT, et al. Clinical and genetic analysis of Vietnamese patients diagnosed with early-onset Parkinson’s disease. Brain Behav. 2023; 13(4):
e2950 . DOI: 10.1002/brb3.2950 - 128Tay YW, Tan AH, Lim JL, Lohmann K, Ibrahim KA, Abdul Aziz Z, et al. Genetic study of early-onset Parkinson’s disease in the Malaysian population. Parkinsonism Relat Disord. 2023; 111: 105399. DOI: 10.1016/j.parkreldis.2023.105399
- 129Miyajima H, Takahashi Y, Kamata T, Shimizu H, Sakai N, Gitlin JD. Use of desferrioxamine in the treatment of aceruloplasminemia. Ann Neurol. 1997; 41(3): 404–7. DOI: 10.1002/ana.410410318
- 130Yonekawa M, Okabe T, Asamoto Y, Ohta M. A case of hereditary ceruloplasmin deficiency with iron deposition in the brain associated with chorea, dementia, diabetes mellitus and retinal pigmentation: administration of fresh-frozen human plasma. Eur Neurol. 1999; 42(3): 157–62. DOI: 10.1159/000008091
- 131Wassenberg T, Molero-Luis M, Jeltsch K, Hoffmann GF, Assmann B, Blau N, et al. Consensus guideline for the diagnosis and treatment of aromatic l-amino acid decarboxylase (AADC) deficiency. Orphanet J Rare Dis. 2017; 12(1): 12. DOI: 10.1186/s13023-016-0522-z
- 132Asmus F, Horber V, Pohlenz J, Schwabe D, Zimprich A, Munz M, et al. A novel TITF-1 mutation causes benign hereditary chorea with response to levodopa. Neurology. 2005; 64(11): 1952–4. DOI: 10.1212/01.WNL.0000164000.75046.CC
- 133Berginer VM, Salen G, Shefer S. Long-term treatment of cerebrotendinous xanthomatosis with chenodeoxycholic acid. N Engl J Med. 1984; 311(26): 1649–52. DOI: 10.1056/NEJM198412273112601
- 134Weissbach A, Pauly MG, Herzog R, Hahn L, Halmans S, Hamami F, et al. Relationship of genotype, phenotype, and treatment in dopa-responsive dystonia: MDSGene review. Mov Disord. 2022; 37(2): 237–52. DOI: 10.1002/mds.28874
- 135Strupp M, Zwergal A, Brandt T. Episodic ataxia type 2. Neurotherapeutics. 2007; 4(2): 267–73. DOI: 10.1016/j.nurt.2007.01.014
- 136Jen JC, Graves TD, Hess EJ, Hanna MG, Griggs RC, Baloh RW, et al. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain. 2007; 130(Pt 10): 2484–93. DOI: 10.1093/brain/awm126
- 137Tuschl K, Mills PB, Parsons H, Malone M, Fowler D, Bitner-Glindzicz M, et al. Hepatic cirrhosis, dystonia, polycythaemia and hypermanganesaemia–a new metabolic disorder. J Inherit Metab Dis. 2008; 31(2): 151–63. DOI: 10.1007/s10545-008-0813-1
- 138Santos-Lozano A, Villamandos Garcia D, Sanchis-Gomar F, Fiuza-Luces C, Pareja-Galeano H, Garatachea N, et al. Niemann-Pick disease treatment: a systematic review of clinical trials. Ann Transl Med. 2015; 3(22): 360.
- 139Wein T, Andermann F, Silver K, Dubeau F, Andermann E, Rourke-Frew F, et al. Exquisite sensitivity of paroxysmal kinesigenic choreoathetosis to carbamazepine. Neurology. 1996; 47(4): 1104–6. DOI: 10.1212/WNL.47.4.1104-a
- 140Sweney MT, Silver K, Gerard-Blanluet M, Pedespan JM, Renault F, Arzimanoglou A, et al. Alternating hemiplegia of childhood: early characteristics and evolution of a neurodevelopmental syndrome. Pediatrics. 2009; 123(3): e534–41. DOI: 10.1542/peds.2008-2027
- 141Manes M, Alberici A, Di Gregorio E, Boccone L, Premi E, Mitro N, et al. Docosahexaenoic acid is a beneficial replacement treatment for spinocerebellar ataxia 38. Ann Neurol. 2017; 82(4): 615–21. DOI: 10.1002/ana.25059
- 142Walshe JM. Penicillamine, a new oral therapy for Wilson’s disease. Am J Med. 1956; 21(4): 487–95. DOI: 10.1016/0002-9343(56)90066-3
- 143Hoogenraad TU, Van Hattum J, Van den Hamer CJ. Management of Wilson’s disease with zinc sulphate. Experience in a series of 27 patients. J Neurol Sci. 1987; 77(2–3): 137–46. DOI: 10.1016/0022-510X(87)90116-X
- 144Muller DP, Lloyd JK, Bird AC. Long-term management of abetalipoproteinaemia. Possible role for vitamin E. Arch Dis Child. 1977; 52(3): 209–14. DOI: 10.1136/adc.52.3.209
- 145Presterud R, Deng WH, Wennerstrom AB, Burgers T, Gajera B, Mattsson K, et al. Long-term nicotinamide riboside use improves coordination and eye movements in ataxia telangiectasia. Mov Disord; 2023. DOI: 10.1002/mds.29645
- 146Alfadhel M, Almuntashri M, Jadah RH, Bashiri FA, Al Rifai MT, Al Shalaan H, et al. Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis. 2013; 8: 83. DOI: 10.1186/1750-1172-8-83
- 147Nasrallah F, Feki M, Kaabachi N. Creatine and creatine deficiency syndromes: biochemical and clinical aspects. Pediatr Neurol. 2010; 42(3): 163–71. DOI: 10.1016/j.pediatrneurol.2009.07.015
- 148Steinfeld R, Grapp M, Kraetzner R, Dreha-Kulaczewski S, Helms G, Dechent P, et al. Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet. 2009; 85(3): 354–63. DOI: 10.1016/j.ajhg.2009.08.005
- 149Boy N, Haege G, Heringer J, Assmann B, Muhlhausen C, Ensenauer R, et al. Low lysine diet in glutaric aciduria type I–effect on anthropometric and biochemical follow-up parameters. J Inherit Metab Dis. 2013; 36(3): 525–33. DOI: 10.1007/s10545-012-9517-7
- 150Baldwin EJ, Gibberd FB, Harley C, Sidey MC, Feher MD, Wierzbicki AS. The effectiveness of long-term dietary therapy in the treatment of adult Refsum disease. J Neurol Neurosurg Psychiatry. 2010; 81(9): 954–7. DOI: 10.1136/jnnp.2008.161059
