Have a personal or library account? Click to login
Genetic Testing of Movements Disorders: A Review of Clinical Utility Cover

Genetic Testing of Movements Disorders: A Review of Clinical Utility

Open Access
|Jan 2024

References

  1. 1Kumar KR, Cowley MJ, Davis RL. Next-generation sequencing and emerging technologies. Semin Thromb Hemost. 2019; 45(7): 66173. DOI: 10.1055/s-0039-1688446
  2. 2Jia F, Fellner A, Kumar KR. Monogenic Parkinson’s disease: genotype, phenotype, pathophysiology, and genetic testing. Genes (Basel). 2022; 13(3). DOI: 10.3390/genes13030471
  3. 3Krygier M, Mazurkiewicz-Beldzinska M. Milestones in genetics of cerebellar ataxias. Neurogenetics. 2021; 22(4): 22534. DOI: 10.1007/s10048-021-00656-3
  4. 4Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, et al. Nomenclature of genetic movement disorders: recommendations of the International Parkinson and Movement Disorder Society Task Force – an update. Mov Disord. 2022; 37(5): 90535. DOI: 10.1002/mds.28982
  5. 5Mallett A, Stark Z, Fehlberg Z, Best S, Goranitis I. Determining the utility of diagnostic genomics: a conceptual framework. Hum Genomics. 2023; 17(1): 75. DOI: 10.1186/s40246-023-00524-1
  6. 6Smith HS, Morain SR, Robinson JO, Canfield I, Malek J, Rubanovich CK, et al. Perceived utility of genomic sequencing: qualitative analysis and synthesis of a conceptual model to inform patient-centered instrument development. Patient. 2022; 15(3): 31728. DOI: 10.1007/s40271-021-00558-4
  7. 7Hayeems RZ, Luca S, Ungar WJ, Bhatt A, Chad L, Pullenayegum E, et al. The development of the Clinician-reported Genetic testing Utility InDEx (C-GUIDE): a novel strategy for measuring the clinical utility of genetic testing. Genet Med. 2020; 22(1): 95101. DOI: 10.1038/s41436-019-0620-0
  8. 8Strande NT, Berg JS. Defining the clinical value of a genomic diagnosis in the era of next-generation sequencing. Annu Rev Genomics Hum Genet. 2016; 17: 30332. DOI: 10.1146/annurev-genom-083115-022348
  9. 9Gorcenco S, Ilinca A, Almasoudi W, Kafantari E, Lindgren AG, Puschmann A. New generation genetic testing entering the clinic. Parkinsonism Relat Disord. 2020; 73: 7284. DOI: 10.1016/j.parkreldis.2020.02.015
  10. 10Subramony SH, Burns M, Kugelmann EL, Zingariello CD. Inherited ataxias in children. Pediatr Neurol. 2022; 131: 5462. DOI: 10.1016/j.pediatrneurol.2022.04.004
  11. 11Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020; 19(2): 1708. DOI: 10.1016/S1474-4422(19)30287-X
  12. 12Charlesworth G, Bhatia KP, Wood NW. The genetics of dystonia: new twists in an old tale. Brain. 2013; 136(Pt 7): 201737. DOI: 10.1093/brain/awt138
  13. 13van Egmond ME, Lagrand TJ, Lizaitiene G, Smit M, Tijssen MAJ. A novel diagnostic approach for patients with adult-onset dystonia. J Neurol Neurosurg Psychiatry. 2022; 93(10): 103948. DOI: 10.1136/jnnp-2021-328120
  14. 14de Silva RN, Vallortigara J, Greenfield J, Hunt B, Giunti P, Hadjivassiliou M. Diagnosis and management of progressive ataxia in adults. Pract Neurol. 2019; 19(3): 196207. DOI: 10.1136/practneurol-2018-002096
  15. 15Zech M, Jech R, Boesch S, Skorvanek M, Weber S, Wagner M, et al. Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurol. 2020; 19(11): 90818. DOI: 10.1016/S1474-4422(20)30312-4
  16. 16Wu MC, Chang YY, Lan MY, Chen YF, Tai CH, Lin YF, et al. A clinical and integrated genetic study of isolated and combined dystonia in Taiwan. J Mol Diagn. 2022; 24(3): 26273. DOI: 10.1016/j.jmoldx.2021.12.003
  17. 17Hadjivassiliou M, Martindale J, Shanmugarajah P, Grunewald RA, Sarrigiannis PG, Beauchamp N, et al. Causes of progressive cerebellar ataxia: prospective evaluation of 1500 patients. J Neurol Neurosurg Psychiatry. 2017; 88(4): 3019. DOI: 10.1136/jnnp-2016-314863
  18. 18Nemeth AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EB, Bera KD, et al. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain. 2013; 136(Pt 10): 310618. DOI: 10.1093/brain/awt236
  19. 19Sun YM, Zhou XY, Liang XN, Lin JR, Xu YD, Chen C, et al. The genetic spectrum of a cohort of patients clinically diagnosed as Parkinson’s disease in mainland China. NPJ Parkinsons Dis. 2023; 9(1): 76. DOI: 10.1038/s41531-023-00518-9
  20. 20Hua P, Zhao Y, Zeng Q, Li L, Ren J, Guo J, et al. Genetic analysis of patients with early-onset Parkinson’s disease in eastern China. Front Aging Neurosci. 2022; 14: 849462. DOI: 10.3389/fnagi.2022.849462
  21. 21Ibanez K, Polke J, Hagelstrom RT, Dolzhenko E, Pasko D, Thomas ERA, et al. Whole genome sequencing for the diagnosis of neurological repeat expansion disorders in the UK: a retrospective diagnostic accuracy and prospective clinical validation study. Lancet Neurol. 2022; 21(3): 23445. DOI: 10.1016/S1474-4422(21)00462-2
  22. 22Lin X, Yang Y, Melton PE, Singh V, Simpson-Yap S, Burdon KP, et al. Integrating genetic structural variations and whole-genome sequencing into clinical neurology. Neurol Genet. 2022; 8(4): e200005. DOI: 10.1212/NXG.0000000000200005
  23. 23Kim A, Kumar KR, Davis RL, Mallawaarachchi AC, Gayevskiy V, Minoche AE, et al. Increased diagnostic yield of spastic paraplegia with or without cerebellar ataxia through whole-genome sequencing. Cerebellum. 2019; 18(4): 78190. DOI: 10.1007/s12311-019-01038-0
  24. 24Kumar KR, Davis RL, Tchan MC, Wali GM, Mahant N, Ng K, et al. Whole genome sequencing for the genetic diagnosis of heterogenous dystonia phenotypes. Parkinsonism Relat Disord. 2019; 69: 1118. DOI: 10.1016/j.parkreldis.2019.11.004
  25. 25Palmer EE, Sachdev R, Macintosh R, Melo US, Mundlos S, Righetti S, et al. Diagnostic yield of whole genome sequencing after nondiagnostic exome sequencing or gene panel in developmental and epileptic encephalopathies. Neurology. 2021; 96(13): e1770e82. DOI: 10.1212/WNL.0000000000011655
  26. 26Ewans LJ, Minoche AE, Schofield D, Shrestha R, Puttick C, Zhu Y, et al. Whole exome and genome sequencing in mendelian disorders: a diagnostic and health economic analysis. Eur J Hum Genet. 2022; 30(10): 112131. DOI: 10.1038/s41431-022-01162-2
  27. 27Ngo KJ, Rexach JE, Lee H, Petty LE, Perlman S, Valera JM, et al. A diagnostic ceiling for exome sequencing in cerebellar ataxia and related neurological disorders. Hum Mutat. 2020; 41(2): 487501. DOI: 10.1002/humu.23946
  28. 28Zech M, Boesch S, Skorvanek M, Necpal J, Svantnerova J, Wagner M, et al. Clinically relevant copy-number variants in exome sequencing data of patients with dystonia. Parkinsonism Relat Disord. 2021; 84: 12934. DOI: 10.1016/j.parkreldis.2021.02.013
  29. 29van Egmond ME, Lugtenberg CHA, Brouwer OF, Contarino MF, Fung VSC, Heiner-Fokkema MR, et al. A post hoc study on gene panel analysis for the diagnosis of dystonia. Mov Disord. 2017; 32(4): 56975. DOI: 10.1002/mds.26937
  30. 30Lanore A, Casse F, Tesson C, Courtin T, Menon PJ, Sambin S, et al. Differences in survival across monogenic forms of Parkinson’s disease. Ann Neurol. 2023; 94(1): 12332. DOI: 10.1002/ana.26636
  31. 31Verhagen MM, Last JI, Hogervorst FB, Smeets DF, Roeleveld N, Verheijen F, et al. Presence of ATM protein and residual kinase activity correlates with the phenotype in ataxia-telangiectasia: a genotype-phenotype study. Hum Mutat. 2012; 33(3): 56171. DOI: 10.1002/humu.22016
  32. 32Langbehn DR, Registry Investigators of the European Huntington Disease N. Longer CAG repeat length is associated with shorter survival after disease onset in Huntington disease. Am J Hum Genet. 2022; 109(1): 1729. DOI: 10.1016/j.ajhg.2021.12.002
  33. 33Scriba CK, Beecroft SJ, Clayton JS, Cortese A, Sullivan R, Yau WY, et al. A novel RFC1 repeat motif (ACAGG) in two Asia-Pacific CANVAS families. Brain. 2020; 143(10): 290410. DOI: 10.1093/brain/awaa263
  34. 34McFarland KN, Liu J, Landrian I, Zeng D, Raskin S, Moscovich M, et al. Repeat interruptions in spinocerebellar ataxia type 10 expansions are strongly associated with epileptic seizures. Neurogenetics. 2014; 15(1): 5964. DOI: 10.1007/s10048-013-0385-6
  35. 35Wright GEB, Collins JA, Kay C, McDonald C, Dolzhenko E, Xia Q, et al. Length of uninterrupted CAG, independent of polyglutamine size, results in increased somatic instability, hastening onset of Huntington disease. Am J Hum Genet. 2019; 104(6): 111626. DOI: 10.1016/j.ajhg.2019.04.007
  36. 36Stevanovski I, Chintalaphani SR, Gamaarachchi H, Ferguson JM, Pineda SS, Scriba CK, et al. Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Sci Adv. 2022; 8(9): eabm5386. DOI: 10.1126/sciadv.abm5386
  37. 37Trinh J, Luth T, Schaake S, Laabs BH, Schluter K, Labeta J, et al. Mosaic divergent repeat interruptions in XDP influence repeat stability and disease onset. Brain. 2023; 146(3): 107582. DOI: 10.1093/brain/awac160
  38. 38Paul KC, Schulz J, Bronstein JM, Lill CM, Ritz BR. Association of polygenic risk score with cognitive decline and motor progression in Parkinson disease. JAMA Neurol. 2018; 75(3): 3606. DOI: 10.1001/jamaneurol.2017.4206
  39. 39Dehestani M, Liu H, Gasser T. Polygenic risk scores contribute to personalized medicine of Parkinson’s disease. J Pers Med. 2021; 11(10). DOI: 10.3390/jpm11101030
  40. 40Maloney KA, Alaeddin DS, von Coelln R, Dixon S, Shulman LM, Schrader K, et al. Parkinson’s disease: patients’ knowledge, attitudes, and interest in genetic counseling. J Genet Couns. 2018; 27(5): 12009. DOI: 10.1007/s10897-018-0239-3
  41. 41Sakanaka K, Waters CH, Levy OA, Louis ED, Chung WK, Marder KS, et al. Knowledge of and interest in genetic results among Parkinson disease patients and caregivers. J Genet Couns. 2014; 23(1): 11420. DOI: 10.1007/s10897-013-9618-y
  42. 42Hill EJ, Robak LA, Al-Ouran R, Deger J, Fong JC, Vandeventer PJ, et al. Genome sequencing in the Parkinson disease clinic. Neurol Genet. 2022; 8(4): e200002. DOI: 10.1212/NXG.0000000000200002
  43. 43Meneret A, Garcin B, Frismand S, Lannuzel A, Mariani LL, Roze E. Treatable hyperkinetic movement disorders not to be missed. Front Neurol. 2021; 12: 659805. DOI: 10.3389/fneur.2021.659805
  44. 44Jinnah HA, Albanese A, Bhatia KP, Cardoso F, Da Prat G, de Koning TJ, et al. Treatable inherited rare movement disorders. Mov Disord. 2018; 33(1): 2135. DOI: 10.1002/mds.27140
  45. 45Ebrahimi-Fakhari D, Van Karnebeek C, Munchau A. Movement disorders in treatable inborn errors of metabolism. Mov Disord. 2019; 34(5): 598613. DOI: 10.1002/mds.27568
  46. 46Stezin A, Pal PK. Treatable ataxias: how to find the needle in the haystack? J Mov Disord. 2022; 15(3): 20626. DOI: 10.14802/jmd.22069
  47. 47Wilke C, Pellerin D, Mengel D, Traschutz A, Danzi MC, Dicaire MJ, et al. GAA-FGF14 ataxia (SCA27B): phenotypic profile, natural history progression and 4-aminopyridine treatment response. Brain. 2023; 146(10): 414457. DOI: 10.1093/brain/awad157
  48. 48Pellerin D, Danzi MC, Wilke C, Renaud M, Fazal S, Dicaire MJ, et al. Deep intronic FGF14 GAA repeat expansion in late-onset cerebellar ataxia. N Engl J Med. 2023; 388(2): 12841. DOI: 10.1056/NEJMoa2207406
  49. 49Meneret A, Gras D, McGovern E, Roze E. Caffeine and the dyskinesia related to mutations in the ADCY5 gene. Ann Intern Med. 2019; 171(6): 439. DOI: 10.7326/L19-0038
  50. 50Lynch DR, Chin MP, Delatycki MB, Subramony SH, Corti M, Hoyle JC, et al. Safety and efficacy of omaveloxolone in Friedreich ataxia (MOXIe study). Ann Neurol. 2021; 89(2): 21225. DOI: 10.1002/ana.25934
  51. 51Liu JS, Chen Y, Shi DD, Zhang BR, Pu JL. Pharmacogenomics-a new frontier for individualized treatment of Parkinson’s disease. Curr Neuropharmacol. 2023; 21(3): 53646. DOI: 10.2174/1570159X21666221229154830
  52. 52Chan GH. The role of genetic data in selecting device-aided therapies in patients with advanced Parkinson’s disease: a mini-review. Front Aging Neurosci. 2022; 14: 895430. DOI: 10.3389/fnagi.2022.895430
  53. 53Pal G, Mangone G, Hill EJ, Ouyang B, Liu Y, Lythe V, et al. Parkinson disease and subthalamic nucleus deep brain stimulation: cognitive effects in GBA mutation carriers. Ann Neurol. 2022; 91(3): 42435. DOI: 10.1002/ana.26302
  54. 54Mangone G, Bekadar S, Cormier-Dequaire F, Tahiri K, Welaratne A, Czernecki V, et al. Early cognitive decline after bilateral subthalamic deep brain stimulation in Parkinson’s disease patients with GBA mutations. Parkinsonism Relat Disord. 2020; 76: 5662. DOI: 10.1016/j.parkreldis.2020.04.002
  55. 55Avenali M, Zangaglia R, Cuconato G, Palmieri I, Albanese A, Artusi CA, et al. Are patients with GBA-Parkinson disease good candidates for deep brain stimulation? A longitudinal multicentric study on a large Italian cohort. J Neurol Neurosurg Psychiatry; 2023. DOI: 10.1136/jnnp-2023-332387
  56. 56Tisch S, Kumar KR. Pallidal deep brain stimulation for monogenic dystonia: the effect of gene on outcome. Front Neurol. 2020; 11: 630391. DOI: 10.3389/fneur.2020.630391
  57. 57Albanese A. Deep brain stimulation in dystonia: disentangling heterogeneity. Mov Disord Clin Pract. 2021; 8(1): 68. DOI: 10.1002/mdc3.13113
  58. 58Artusi CA, Dwivedi A, Romagnolo A, Bortolani S, Marsili L, Imbalzano G, et al. Differential response to pallidal deep brain stimulation among monogenic dystonias: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2020; 91(4): 42633. DOI: 10.1136/jnnp-2019-322169
  59. 59Albanese A, Di Giovanni M, Amami P, Lalli S. Failure of pallidal deep brain stimulation in DYT12-ATP1A3 dystonia. Parkinsonism Relat Disord. 2017; 45: 99100. DOI: 10.1016/j.parkreldis.2017.09.008
  60. 60Fearon C, McKinley J, McCarthy A, Rebelo P, Goggin C, Magennis B, et al. Failure of sequential pallidal and motor thalamus DBS for rapid-onset dystonia-parkinsonism (DYT12). Mov Disord Clin Pract. 2018; 5(4): 4445. DOI: 10.1002/mdc3.12559
  61. 61Weber J, Piroth T, Rijntjes M, Jung B, Reinacher PC, Weiller C, et al. Atypical presentation of rapid-onset dystonia-parkinsonism (DYT12) unresponsive to deep brain stimulation of the subthalamic nucleus. Mov Disord Clin Pract. 2018; 5(4): 4279. DOI: 10.1002/mdc3.12605
  62. 62Wang KL, Li JP, Shan YZ, Zhao GG, Ma JH, Ramirez-Zamora A, et al. Centromedian-parafascicular complex deep brain stimulation improves motor symptoms in rapid onset dystonia-parkinsonism (DYT12-ATP1A3). Brain Stimul. 2023; 16(5): 13102. DOI: 10.1016/j.brs.2023.08.021
  63. 63Zuniga-Ramirez C, Kramis-Hollands M, Mercado-Pimentel R, Gonzalez-Usigli HA, Saenz-Farret M, Soto-Escageda A, et al. Generalized dystonia and paroxysmal Dystonic attacks due to a novel ATP1A3 variant. Tremor Other Hyperkinet Mov (N Y). 2019; 9. DOI: 10.5334/tohm.490
  64. 64Gabsi S, Gouider-Khouja N, Belal S, Fki M, Kefi M, Turki I, et al. Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol. 2001; 8(5): 47781. DOI: 10.1046/j.1468-1331.2001.00273.x
  65. 65Friedman JR, Thiele EA, Wang D, Levine KB, Cloherty EK, Pfeifer HH, et al. Atypical GLUT1 deficiency with prominent movement disorder responsive to ketogenic diet. Mov Disord. 2006; 21(2): 2415. DOI: 10.1002/mds.20660
  66. 66Leen WG, Taher M, Verbeek MM, Kamsteeg EJ, van de Warrenburg BP, Willemsen MA. GLUT1 deficiency syndrome into adulthood: a follow-up study. J Neurol. 2014; 261(3): 58999. DOI: 10.1007/s00415-014-7240-z
  67. 67Merola A, Kobayashi N, Romagnolo A, Wright BA, Artusi CA, Imbalzano G, et al. Gene therapy in movement disorders: a systematic review of ongoing and completed clinical trials. Front Neurol. 2021; 12: 648532. DOI: 10.3389/fneur.2021.648532
  68. 68Tai CH, Lee NC, Chien YH, Byrne BJ, Muramatsu SI, Tseng SH, et al. Long-term efficacy and safety of eladocagene exuparvovec in patients with AADC deficiency. Mol Ther. 2022; 30(2): 50918. DOI: 10.1016/j.ymthe.2021.11.005
  69. 69Stewart JD, Horvath R, Baruffini E, Ferrero I, Bulst S, Watkins PB, et al. Polymerase gamma gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology. 2010; 52(5): 17916. DOI: 10.1002/hep.23891
  70. 70Barbano RL, Hill DF, Snively BM, Light LS, Boggs N, McCall WV, et al. New triggers and non-motor findings in a family with rapid-onset dystonia-parkinsonism. Parkinsonism Relat Disord. 2012; 18(6): 73741. DOI: 10.1016/j.parkreldis.2012.03.020
  71. 71Tadic V, Kasten M, Bruggemann N, Stiller S, Hagenah J, Klein C. Dopa-responsive dystonia revisited: diagnostic delay, residual signs, and nonmotor signs. Arch Neurol. 2012; 69(12): 155862. DOI: 10.1001/archneurol.2012.574
  72. 72Kumar KR, Cortese A, Tomlinson SE, Efthymiou S, Ellis M, Zhu D, et al. RFC1 expansions can mimic hereditary sensory neuropathy with cough and Sjogren syndrome. Brain. 2020; 143(10): e82. DOI: 10.1093/brain/awaa244
  73. 73Bae JH, Jeong HB, Kim HR, Song KS, Park ST, Ahn SW. A case of HSP carrying c.1537–11A > G mutation of the SPAST gene presented as stiff-person syndrome. Neurol India. 2021; 69(4): 10534. DOI: 10.4103/0028-3886.325344
  74. 74Fernandez-Eulate G, Debs R, Maisonobe T, Latour P, Cohen-Aubart F, Saadoun D, et al. Sjogren syndrome and RFC1-CANVAS sensory ganglionopathy: co-occurrence or misdiagnosis? J Neurol. 2023; 270(1): 4605. DOI: 10.1007/s00415-022-11382-7
  75. 75Hirano M, Kuwahara M, Yamagishi Y, Samukawa M, Fujii K, Yamashita S, et al. CANVAS-related RFC1 mutations in patients with immune-mediated neuropathy. Sci Rep. 2023; 13(1): 17801. DOI: 10.1038/s41598-023-45011-8
  76. 76Giannoccaro MP, Matteo E, Bartiromo F, Tonon C, Santorelli FM, Liguori R, et al. Multiple sclerosis in patients with hereditary spastic paraplegia: a case report and systematic review. Neurol Sci. 2022; 43(9): 550111. DOI: 10.1007/s10072-022-06145-1
  77. 77Kwong AK, Tsang MH, Fung JL, Mak CC, Chan KL, Rodenburg RJT, et al. Exome sequencing in paediatric patients with movement disorders. Orphanet J Rare Dis. 2021; 16(1): 32. DOI: 10.1186/s13023-021-01688-6
  78. 78Cordeiro D, Bullivant G, Siriwardena K, Evans A, Kobayashi J, Cohn RD, et al. Genetic landscape of pediatric movement disorders and management implications. Neurol Genet. 2018; 4(5): e265. DOI: 10.1212/NXG.0000000000000265
  79. 79Pierron L, Tezenas du Montcel S, Heinzmann A, Coarelli G, Heron D, Heide S, et al. Reproductive choices and intrafamilial communication in neurogenetic diseases with different self-estimated severities. J Med Genet. 2023; 60(4): 34651. DOI: 10.1136/jmg-2022-108477
  80. 80Mendes A, Sequeiros J, Clarke AJ. Between responsibility and desire: accounts of reproductive decisions from those at risk for or affected by late-onset neurological diseases. J Genet Couns. 2021; 30(5): 148090. DOI: 10.1002/jgc4.1415
  81. 81Fahy N, Rice C, Lahiri N, Desai R, Stott J. Genetic risk for Huntington disease and reproductive decision-making: a systematic review. Clin Genet. 2023; 104(2): 14762. DOI: 10.1111/cge.14345
  82. 82Cahn S, Rosen A, Wilmot G. Spinocerebellar ataxia patient perceptions regarding reproductive options. Mov Disord Clin Pract. 2020; 7(1): 3744. DOI: 10.1002/mdc3.12859
  83. 83Gorman GS, McFarland R, Stewart J, Feeney C, Turnbull DM. Mitochondrial donation: from test tube to clinic. Lancet. 2018; 392(10154): 11912. DOI: 10.1016/S0140-6736(18)31868-3
  84. 84Gong P, Fanos JH, Korty L, Siskind CE, Hanson-Kahn AK. Impact of Huntington disease gene-positive status on pre-symptomatic young adults and recommendations for genetic counselors. J Genet Couns. 2016; 25(6): 118897. DOI: 10.1007/s10897-016-9951-z
  85. 85Vears DF, Ayres S, Boyle J, Mansour J, Newson AJ, Education E, et al. Human Genetics Society of Australasia position statement: predictive and presymptomatic genetic testing in adults and children. Twin Res Hum Genet. 2020; 23(3): 1849. DOI: 10.1017/thg.2020.51
  86. 86Andorno R. The right not to know: an autonomy based approach. J Med Ethics. 2004; 30(5): 4359; discussion 9–40. DOI: 10.1136/jme.2002.001578
  87. 87Lowry KP, Geuzinge HA, Stout NK, Alagoz O, Hampton J, Kerlikowske K, et al. Breast cancer screening strategies for women with ATM, CHEK2, and PALB2 pathogenic variants: a comparative modeling analysis. JAMA Oncol. 2022; 8(4): 58796. DOI: 10.1001/jamaoncol.2021.6204
  88. 88Taber JM, Peters E, Klein WMP, Cameron LD, Turbitt E, Biesecker BB. Motivations to learn genomic information are not exceptional: lessons from behavioral science. Clin Genet. 2023; 104(4): 397405. DOI: 10.1111/cge.14401
  89. 89Goranitis I, Best S, Stark Z, Boughtwood T, Christodoulou J. The value of genomic sequencing in complex pediatric neurological disorders: a discrete choice experiment. Genet Med. 2021; 23(1): 15562. DOI: 10.1038/s41436-020-00949-2
  90. 90Marshall DA, MacDonald KV, Heidenreich S, Hartley T, Bernier FP, Gillespie MK, et al. The value of diagnostic testing for parents of children with rare genetic diseases. Genet Med. 2019; 21(12): 2798806. DOI: 10.1038/s41436-019-0583-1
  91. 91Goranitis I, Best S, Christodoulou J, Stark Z, Boughtwood T. The personal utility and uptake of genomic sequencing in pediatric and adult conditions: eliciting societal preferences with three discrete choice experiments. Genet Med. 2020; 22(8): 13119. DOI: 10.1038/s41436-020-0809-2
  92. 92Bertier G, Hetu M, Joly Y. Unsolved challenges of clinical whole-exome sequencing: a systematic literature review of end-users’ views. BMC Med Genomics. 2016; 9(1): 52. DOI: 10.1186/s12920-016-0213-6
  93. 93Foo JN, Liu J, Tan EK. Next-generation sequencing diagnostics for neurological diseases/disorders: from a clinical perspective. Hum Genet. 2013; 132(7): 72134. DOI: 10.1007/s00439-013-1287-2
  94. 94Barseghyan H, Pang AWC, Zhang Y, Sahajpal NS, Delpu Y, Lai C-YJ, et al. Neurogenetic variant analysis by optical genome mapping for structural variation detection-balanced genomic rearrangements, copy number variants, and repeat expansions/contractions. In: Proukakis C, (ed.), Genomic Structural Variants in Nervous System Disorders. New York, NY: Springer US; 2022. p. 15572. DOI: 10.1007/978-1-0716-2357-2_9
  95. 95Su Y, Fan L, Shi C, Wang T, Zheng H, Luo H, et al. Deciphering neurodegenerative diseases using long-read sequencing. Neurology. 2021; 97(9): 42333. DOI: 10.1212/WNL.0000000000012466
  96. 96Rafehi H, Read J, Szmulewicz DJ, Davies KC, Snell P, Fearnley LG, et al. An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA50/ATX-FGF14. Am J Hum Genet. 2023; 110(1): 10519. DOI: 10.1016/j.ajhg.2022.11.015
  97. 97Ishiura H, Doi K, Mitsui J, Yoshimura J, Matsukawa MK, Fujiyama A, et al. Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat Genet. 2018; 50(4): 58190. DOI: 10.1038/s41588-018-0067-2
  98. 98Florian RT, Kraft F, Leitao E, Kaya S, Klebe S, Magnin E, et al. Unstable TTTTA/TTTCA expansions in MARCH6 are associated with familial adult myoclonic epilepsy type 3. Nat Commun. 2019; 10(1): 4919. DOI: 10.1038/s41467-019-12763-9
  99. 99Clift K, Macklin S, Halverson C, McCormick JB, Abu Dabrh AM, Hines S. Patients’ views on variants of uncertain significance across indications. J Community Genet. 2020; 11(2): 13945. DOI: 10.1007/s12687-019-00434-7
  100. 100Weile J, Roth FP. Multiplexed assays of variant effects contribute to a growing genotype-phenotype atlas. Hum Genet. 2018; 137(9): 66578. DOI: 10.1007/s00439-018-1916-x
  101. 101Beecroft SJ, Lamont PJ, Edwards S, Goullee H, Davis MR, Laing NG, et al. The Impact of next-generation sequencing on the diagnosis, treatment, and prevention of hereditary neuromuscular disorders. Mol Diagn Ther. 2020; 24(6): 64152. DOI: 10.1007/s40291-020-00495-2
  102. 102Saunders-Pullman R, Raymond D, Ortega RA, Shalash A, Gatto E, Salari M, et al. International genetic testing and counseling practices for Parkinson’s disease. Mov Disord. 2023; 38(8): 152735. DOI: 10.1002/mds.29442
  103. 103Gatto EM, Walker RH, Gonzalez C, Cesarini M, Cossu G, Stephen CD, et al. Worldwide barriers to genetic testing for movement disorders. Eur J Neurol. 2021; 28(6): 19019. DOI: 10.1111/ene.14826
  104. 104Alcalay RN, Kehoe C, Shorr E, Battista R, Hall A, Simuni T, et al. Genetic testing for Parkinson disease: current practice, knowledge, and attitudes among US and Canadian movement disorders specialists. Genet Med. 2020; 22(3): 57480. DOI: 10.1038/s41436-019-0684-x
  105. 105Global Parkinson’s Genetics Program. GP2: the global Parkinson’s genetics program. Mov Disord. 2021; 36(4): 84251. DOI: 10.1002/mds.28494
  106. 106Wan Z, Hazel JW, Clayton EW, Vorobeychik Y, Kantarcioglu M, Malin BA. Sociotechnical safeguards for genomic data privacy. Nat Rev Genet. 2022; 23(7): 42945. DOI: 10.1038/s41576-022-00455-y
  107. 107Martinez-Martin N, Magnus D. Privacy and ethical challenges in next-generation sequencing. Expert Rev Precis Med Drug Dev. 2019; 4(2): 95104. DOI: 10.1080/23808993.2019.1599685
  108. 108Tan EK, Lee J, Hunter C, Shinawi L, Fook-Chong S, Jankovic J. Comparing knowledge and attitudes towards genetic testing in Parkinson’s disease in an American and Asian population. J Neurol Sci. 2007; 252(2): 11320. DOI: 10.1016/j.jns.2006.10.016
  109. 109Green RC, Lautenbach D, McGuire AL. GINA, genetic discrimination, and genomic medicine. N Engl J Med. 2015; 372(5): 3979. DOI: 10.1056/NEJMp1404776
  110. 110Tiller J, Bakshi A, Dowling G, Keogh L, McInerney-Leo A, Barlow-Stewart K, et al. Community concerns about genetic discrimination in life insurance persist in Australia: A survey of consumers offered genetic testing. Eur J Hum Genet; 2023. DOI: 10.1038/s41431-023-01373-1
  111. 111Tiller J, Morris S, Rice T, Barter K, Riaz M, Keogh L, et al. Genetic discrimination by Australian insurance companies: a survey of consumer experiences. Eur J Hum Genet. 2020; 28(1): 10813. DOI: 10.1038/s41431-019-0426-1
  112. 112Cho MK, Sankar P. Forensic genetics and ethical, legal and social implications beyond the clinic. Nat Genet. 2004; 36(11 Suppl): S812. DOI: 10.1038/ng1594
  113. 113Oliveri S, Ferrari F, Manfrinati A, Pravettoni G. A systematic review of the psychological implications of genetic testing: a comparative analysis among cardiovascular, neurodegenerative and cancer diseases. Front Genet. 2018; 9: 624. DOI: 10.3389/fgene.2018.00624
  114. 114Clarke AJ. Managing the ethical challenges of next-generation sequencing in genomic medicine. Br Med Bull. 2014; 111(1): 1730. DOI: 10.1093/bmb/ldu017
  115. 115Kodida R, Reble E, Clausen M, Shickh S, Mighton C, Sam J, et al. A model for the return and referral of all clinically significant secondary findings of genomic sequencing. J Med Genet. 2023; 60(8): 7339. DOI: 10.1136/jmg-2022-109091
  116. 116Jaitovich Groisman I, Hurlimann T, Shoham A, Godard B. Practices and views of neurologists regarding the use of whole-genome sequencing in clinical settings: a web-based survey. Eur J Hum Genet. 2017; 25(7): 8018. DOI: 10.1038/ejhg.2017.64
  117. 117Eratne D, Schneider A, Lynch E, Martyn M, Velakoulis D, Fahey M, et al. The clinical utility of exome sequencing and extended bioinformatic analyses in adolescents and adults with a broad range of neurological phenotypes: an Australian perspective. J Neurol Sci. 2021; 420: 117260. DOI: 10.1016/j.jns.2020.117260
  118. 118Benkirane M, Marelli C, Guissart C, Roubertie A, Ollagnon E, Choumert A, et al. High rate of hypomorphic variants as the cause of inherited ataxia and related diseases: study of a cohort of 366 families. Genet Med. 2021; 23(11): 216070. DOI: 10.1038/s41436-021-01250-6
  119. 119Galatolo D, De Michele G, Silvestri G, Leuzzi V, Casali C, Musumeci O, et al. NGS in hereditary ataxia: when rare becomes frequent. Int J Mol Sci. 2021; 22(16). DOI: 10.3390/ijms22168490
  120. 120Balakrishnan S, Aggarwal S, Muthulakshmi M, Meena AK, Borgohain R, Mridula KR, et al. Clinical and molecular spectrum of degenerative cerebellar ataxia: a single centre study. Neurol India. 2022; 70(3): 93442. DOI: 10.4103/0028-3886.349660
  121. 121Radziwonik W, Elert-Dobkowska E, Klimkowicz-Mrowiec A, Ziora-Jakutowicz K, Stepniak I, Zaremba J, et al. Application of a custom NGS gene panel revealed a high diagnostic utility for molecular testing of hereditary ataxias. J Appl Genet. 2022; 63(3): 51325. DOI: 10.1007/s13353-022-00701-3
  122. 122da Graca FF, Peluzzo TM, Bonadia LC, Martinez ARM, Diniz de Lima F, Pedroso JL, et al. Diagnostic yield of whole exome sequencing for adults with ataxia: a Brazilian perspective. Cerebellum. 2022; 21(1): 4954. DOI: 10.1007/s12311-021-01268-1
  123. 123Ahn JH, Kim AR, Park WY, Cho JW, Park J, Youn J. Whole exome sequencing and clinical investigation of young onset dystonia: what can we learn? Parkinsonism Relat Disord. 2023; 115: 105814. DOI: 10.1016/j.parkreldis.2023.105814
  124. 124Li LX, Liu Y, Huang JH, Yang Y, Pan YG, Zhang XL, et al. Genetic spectrum and clinical features in a cohort of Chinese patients with isolated dystonia. Clin Genet. 2023; 103(4): 45965. DOI: 10.1111/cge.14298
  125. 125Muldmaa M, Mencacci NE, Pittman A, Kadastik-Eerme L, Sikk K, Taba P, et al. Community-based genetic study of Parkinson’s disease in Estonia. Acta Neurol Scand. 2021; 143(1): 8995. DOI: 10.1111/ane.13329
  126. 126Kovanda A, Racki V, Bergant G, Georgiev D, Flisar D, Papic E, et al. A multicenter study of genetic testing for Parkinson’s disease in the clinical setting. NPJ Parkinsons Dis. 2022; 8(1): 149. DOI: 10.1038/s41531-022-00408-6
  127. 127Do MD, Tran TN, Luong AB, Le LHG, Van Le T, Le KT, et al. Clinical and genetic analysis of Vietnamese patients diagnosed with early-onset Parkinson’s disease. Brain Behav. 2023; 13(4): e2950. DOI: 10.1002/brb3.2950
  128. 128Tay YW, Tan AH, Lim JL, Lohmann K, Ibrahim KA, Abdul Aziz Z, et al. Genetic study of early-onset Parkinson’s disease in the Malaysian population. Parkinsonism Relat Disord. 2023; 111: 105399. DOI: 10.1016/j.parkreldis.2023.105399
  129. 129Miyajima H, Takahashi Y, Kamata T, Shimizu H, Sakai N, Gitlin JD. Use of desferrioxamine in the treatment of aceruloplasminemia. Ann Neurol. 1997; 41(3): 4047. DOI: 10.1002/ana.410410318
  130. 130Yonekawa M, Okabe T, Asamoto Y, Ohta M. A case of hereditary ceruloplasmin deficiency with iron deposition in the brain associated with chorea, dementia, diabetes mellitus and retinal pigmentation: administration of fresh-frozen human plasma. Eur Neurol. 1999; 42(3): 15762. DOI: 10.1159/000008091
  131. 131Wassenberg T, Molero-Luis M, Jeltsch K, Hoffmann GF, Assmann B, Blau N, et al. Consensus guideline for the diagnosis and treatment of aromatic l-amino acid decarboxylase (AADC) deficiency. Orphanet J Rare Dis. 2017; 12(1): 12. DOI: 10.1186/s13023-016-0522-z
  132. 132Asmus F, Horber V, Pohlenz J, Schwabe D, Zimprich A, Munz M, et al. A novel TITF-1 mutation causes benign hereditary chorea with response to levodopa. Neurology. 2005; 64(11): 19524. DOI: 10.1212/01.WNL.0000164000.75046.CC
  133. 133Berginer VM, Salen G, Shefer S. Long-term treatment of cerebrotendinous xanthomatosis with chenodeoxycholic acid. N Engl J Med. 1984; 311(26): 164952. DOI: 10.1056/NEJM198412273112601
  134. 134Weissbach A, Pauly MG, Herzog R, Hahn L, Halmans S, Hamami F, et al. Relationship of genotype, phenotype, and treatment in dopa-responsive dystonia: MDSGene review. Mov Disord. 2022; 37(2): 23752. DOI: 10.1002/mds.28874
  135. 135Strupp M, Zwergal A, Brandt T. Episodic ataxia type 2. Neurotherapeutics. 2007; 4(2): 26773. DOI: 10.1016/j.nurt.2007.01.014
  136. 136Jen JC, Graves TD, Hess EJ, Hanna MG, Griggs RC, Baloh RW, et al. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain. 2007; 130(Pt 10): 248493. DOI: 10.1093/brain/awm126
  137. 137Tuschl K, Mills PB, Parsons H, Malone M, Fowler D, Bitner-Glindzicz M, et al. Hepatic cirrhosis, dystonia, polycythaemia and hypermanganesaemia–a new metabolic disorder. J Inherit Metab Dis. 2008; 31(2): 15163. DOI: 10.1007/s10545-008-0813-1
  138. 138Santos-Lozano A, Villamandos Garcia D, Sanchis-Gomar F, Fiuza-Luces C, Pareja-Galeano H, Garatachea N, et al. Niemann-Pick disease treatment: a systematic review of clinical trials. Ann Transl Med. 2015; 3(22): 360.
  139. 139Wein T, Andermann F, Silver K, Dubeau F, Andermann E, Rourke-Frew F, et al. Exquisite sensitivity of paroxysmal kinesigenic choreoathetosis to carbamazepine. Neurology. 1996; 47(4): 11046. DOI: 10.1212/WNL.47.4.1104-a
  140. 140Sweney MT, Silver K, Gerard-Blanluet M, Pedespan JM, Renault F, Arzimanoglou A, et al. Alternating hemiplegia of childhood: early characteristics and evolution of a neurodevelopmental syndrome. Pediatrics. 2009; 123(3): e53441. DOI: 10.1542/peds.2008-2027
  141. 141Manes M, Alberici A, Di Gregorio E, Boccone L, Premi E, Mitro N, et al. Docosahexaenoic acid is a beneficial replacement treatment for spinocerebellar ataxia 38. Ann Neurol. 2017; 82(4): 61521. DOI: 10.1002/ana.25059
  142. 142Walshe JM. Penicillamine, a new oral therapy for Wilson’s disease. Am J Med. 1956; 21(4): 48795. DOI: 10.1016/0002-9343(56)90066-3
  143. 143Hoogenraad TU, Van Hattum J, Van den Hamer CJ. Management of Wilson’s disease with zinc sulphate. Experience in a series of 27 patients. J Neurol Sci. 1987; 77(2–3): 13746. DOI: 10.1016/0022-510X(87)90116-X
  144. 144Muller DP, Lloyd JK, Bird AC. Long-term management of abetalipoproteinaemia. Possible role for vitamin E. Arch Dis Child. 1977; 52(3): 20914. DOI: 10.1136/adc.52.3.209
  145. 145Presterud R, Deng WH, Wennerstrom AB, Burgers T, Gajera B, Mattsson K, et al. Long-term nicotinamide riboside use improves coordination and eye movements in ataxia telangiectasia. Mov Disord; 2023. DOI: 10.1002/mds.29645
  146. 146Alfadhel M, Almuntashri M, Jadah RH, Bashiri FA, Al Rifai MT, Al Shalaan H, et al. Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis. 2013; 8: 83. DOI: 10.1186/1750-1172-8-83
  147. 147Nasrallah F, Feki M, Kaabachi N. Creatine and creatine deficiency syndromes: biochemical and clinical aspects. Pediatr Neurol. 2010; 42(3): 16371. DOI: 10.1016/j.pediatrneurol.2009.07.015
  148. 148Steinfeld R, Grapp M, Kraetzner R, Dreha-Kulaczewski S, Helms G, Dechent P, et al. Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet. 2009; 85(3): 35463. DOI: 10.1016/j.ajhg.2009.08.005
  149. 149Boy N, Haege G, Heringer J, Assmann B, Muhlhausen C, Ensenauer R, et al. Low lysine diet in glutaric aciduria type I–effect on anthropometric and biochemical follow-up parameters. J Inherit Metab Dis. 2013; 36(3): 52533. DOI: 10.1007/s10545-012-9517-7
  150. 150Baldwin EJ, Gibberd FB, Harley C, Sidey MC, Feher MD, Wierzbicki AS. The effectiveness of long-term dietary therapy in the treatment of adult Refsum disease. J Neurol Neurosurg Psychiatry. 2010; 81(9): 9547. DOI: 10.1136/jnnp.2008.161059
DOI: https://doi.org/10.5334/tohm.835 | Journal eISSN: 2160-8288
Language: English
Submitted on: Oct 29, 2023
Accepted on: Dec 4, 2023
Published on: Jan 8, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Dennis Yeow, Laura I. Rudaks, Sue-Faye Siow, Ryan L. Davis, Kishore R. Kumar, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.