Have a personal or library account? Click to login
Towards Precision Therapies for Inherited Disorders of Neurodegeneration with Brain Iron Accumulation Cover

Towards Precision Therapies for Inherited Disorders of Neurodegeneration with Brain Iron Accumulation

Open Access
|Nov 2021

References

  1. 1Kruer MC, Boddaert N, Schneider SA, Houlden H, Bhatia KP, Gregory A, et al. Neuroimaging Features of Neurodegeneration with Brain Iron Accumulation. Am J Neuroradiol. 2012; 33: 407414. DOI: 10.3174/ajnr.A2677
  2. 2Cif L, Demailly D, Lin J-P, Barwick KE, Sa M, Abela L, et al. KMT2B-related disorders: expansion of the phenotypic spectrum and long-term efficacy of deep brain stimulation. Brain. 2020; 143: 32423261. DOI: 10.1093/brain/awaa304
  3. 3Hinarejos I, Machuca C, Sancho P, Espinós C. Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (NBIA). Antioxidants. 2020; 9: 1020. DOI: 10.3390/antiox9101020
  4. 4Mohammad SS, Angiti RR, Biggin A, Morales-Briceño H, Goetti R, Perez-Dueñas B, et al. Magnetic resonance imaging pattern recognition in childhood bilateral basal ganglia disorders. Brain Commun. 2020; 2: fcaa178. DOI: 10.1093/braincomms/fcaa178
  5. 5Steel D, Zech M, Zhao C, Barwick KES, Burke D, Demailly D, et al. Loss-of-Function Variants in HOPS Complex Genes VPS16 and VPS41 Cause Early Onset Dystonia Associated with Lysosomal Abnormalities. Ann Neurol. 2020; 88: 867877. DOI: 10.1002/ana.25879
  6. 6Gregory A, Hayflick SJ. Pantothenate Kinase-Associated Neurodegeneration. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Mirzaa G, et al. (Eds.), GeneReviews® [Internet]. Seattle, WA: University of Washington; 2017.
  7. 7Hayflick SJ, Kurian MA, Hogarth P. Chapter 19 – Neurodegeneration with brain iron accumulation. In: Geschwind DH, Paulson HL, Klein C (Eds.). Handbook of Clinical Neurology, 2018; 293305. Elsevier. DOI: 10.1016/B978-0-444-63233-3.00019-1
  8. 8Schulz A, Ajayi T, Specchio N, de Los Reyes E, Gissen P, Ballon D, et al. Study of Intraventricular Cerliponase Alfa for CLN2 Disease. N Engl J Med. 2018; 378: 18981907. DOI: 10.1056/NEJMoa1712649
  9. 9Singh RN, Ottesen EW, Singh NN. The First Orally Deliverable Small Molecule for the Treatment of Spinal Muscular Atrophy. Neurosci Insights. 2020; 15: 2633105520973985. DOI: 10.1177/2633105520973985
  10. 10Kojima K, Nakajima T, Taga N, Miyauchi A, Kato M, Matsumoto A, et al. Gene therapy improves motor and mental function of aromatic l-amino acid decarboxylase deficiency. Brain. 2019; 142: 322333. DOI: 10.1093/brain/awy331
  11. 11Pearson TS, Gupta N, San Sebastian W, Imamura-Ching J, Viehoever A, Grijalvo-Perez A, et al. Gene therapy for aromatic L-amino acid decarboxylase deficiency by MR-guided direct delivery of AAV2-AADC to midbrain dopaminergic neurons. Nat Commun. 2021; 12: 4251. DOI: 10.1038/s41467-021-24524-8
  12. 12Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem. 2016; 139: 179197. DOI: 10.1111/jnc.13425
  13. 13Kruer MC. Chapter Eight – The Neuropathology of Neurodegeneration with Brain Iron Accumulation. In: Bhatia KP, Schneider SA (Eds.), International Review of Neurobiology, 2013; 165194. Academic Press. DOI: 10.1016/B978-0-12-410502-7.00009-0
  14. 14Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan EV, Adalsteinsson E. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. NeuroImage. 2012; 59: 26252635. DOI: 10.1016/j.neuroimage.2011.08.077
  15. 15Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C. Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med. 2019; 133: 221233. DOI: 10.1016/j.freeradbiomed.2018.09.033
  16. 16Drecourt A, Babdor J, Dussiot M, Petit F, Goudin N, Garfa-Traoré M, et al. Impaired Transferrin Receptor Palmitoylation and Recycling in Neurodegeneration with Brain Iron Accumulation. Am J Hum Genet. 2018; 102: 266277. DOI: 10.1016/j.ajhg.2018.01.003
  17. 17Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016; 23: 369379. DOI: 10.1038/cdd.2015.158
  18. 18Dooling EC, Schoene WC, Richardson EP Jr. Hallervorden-Spatz Syndrome. Arch Neurol. 1974; 30: 7083. DOI: 10.1001/archneur.1974.00490310072012
  19. 19Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet. 2001; 28: 345349. DOI: 10.1038/ng572
  20. 20Hayflick SJ, Westaway SK, Levinson B, Zhou B, Johnson MA, Ching KH, et al. Genetic, clinical, and radiographic delineation of Hallervorden–Spatz syndrome. N Engl J Med. 2003; 348: 3340. DOI: 10.1056/NEJMoa020817
  21. 21Jeong SY, Hogarth P, Placzek A, Gregory AM, Fox R, Zhen D, et al. 4′-Phosphopantetheine corrects CoA, iron, and dopamine metabolic defects in mammalian models of PKAN. EMBO Mol Med. 2019; 11: e10489. DOI: 10.15252/emmm.201910489
  22. 22Mignani L, Gnutti B, Zizioli D, Finazzi D. Coenzyme a Biochemistry: From Neurodevelopment to Neurodegeneration. Brain Sci. 2021; 11: 1031. DOI: 10.3390/brainsci11081031
  23. 23Lambrechts RA, Schepers H, Yu Y, van der Zwaag M, Autio KJ, Vieira-Lara MA, et al. CoA-dependent activation of mitochondrial acyl carrier protein links four neurodegenerative diseases. EMBO Mol Med. 2019; 11: e10488. DOI: 10.15252/emmm.201910488
  24. 24Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep. 2014; 31: 61108. DOI: 10.1039/C3NP70054B
  25. 25Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, et al. A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. Biopreservation Biobanking. 2015; 13: 311319. DOI: 10.1089/bio.2015.0032
  26. 26Hörtnagel K, Prokisch H, Meitinger T. An isoform of hPANK2, deficient in pantothenate kinase-associated neurodegeneration, localizes to mitochondria. Hum Mol Genet. 2003; 12: 321327. DOI: 10.1093/hmg/ddg026
  27. 27Johnson MA, Kuo YM, Westaway SK, Parker SM, Ching KHL, Gitschier J, et al. Mitochondrial localization of human PANK2 and hypotheses of secondary iron accumulation in pantothenate kinase-associated neurodegeneration. Ann N Y Acad Sci. 2004; 1012: 282298. DOI: 10.1196/annals.1306.023
  28. 28Sethi KD, Adams RJ, Loring DW, Gammal TE. Hallervorden-Spatz syndrome: Clinical and magnetic resonance imaging correlations. Ann Neurol. 1988; 24: 692694. DOI: 10.1002/ana.410240519
  29. 29Kruer MC, Hiken M, Gregory A, Malandrini A, Clark D, Hogarth P, et al. Novel histopathologic findings in molecularly-confirmed pantothenate kinase-associated neurodegeneration. Brain. 2011; 134: 947958. DOI: 10.1093/brain/awr042
  30. 30Hogarth P, Gregory A, Kruer MC, Sanford L, Wagoner W, Natowicz MR, et al. New NBIA subtype: genetic, clinical, pathologic, and radiographic features of MPAN. Neurology. 2013; 80: 268275. DOI: 10.1212/WNL.0b013e31827e07be
  31. 31Morgan NV, Westaway SK, Morton JEV, Gregory A, Gissen P, Sonek S, et al. PLA2G, encoding a phospholipase A 2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet. 2006; 38: 752754. DOI: 10.1038/ng1826
  32. 32Balsinde J, Balboa MA. Cellular regulation and proposed biological functions of group via calcium-independent phospholipase A2 in activated cells. Cell Signal. 2005; 17: 10521062. DOI: 10.1016/j.cellsig.2005.03.002
  33. 33Kinghorn KJ, Castillo-Quan JI, Bartolome F, Angelova PR, Li L, Pope S, et al. Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction. Brain. 2015; 138: 18011816. DOI: 10.1093/brain/awv132
  34. 34Gregory A, Kurian MA, Maher ER, Hogarth P, Hayflick SJ. PLA2G6-Associated Neurodegeneration. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Mirzaa G, et al. (Eds.), GeneReviews® [Internet]. University of Washington: Seattle (WA); 2017.
  35. 35Paisán-Ruiz C, Li A, Schneider SA, Holton JL, Johnson R, Kidd D, et al. Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiol Aging. 2012; 33: 814823. DOI: 10.1016/j.neurobiolaging.2010.05.009
  36. 36Gregory A, Westaway SK, Holm IE, Kotzbauer PT, Hogarth P, Sonek S, et al. Neurodegeneration associated with genetic defects in phospholipase A2. Neurology. 2008; 71: 14021409. DOI: 10.1212/01.wnl.0000327094.67726.28
  37. 37Hartig MB, Iuso A, Haack T, Kmiec T, Jurkiewicz E, Heim K, et al. Absence of an Orphan Mitochondrial Protein, C19orf12, Causes a Distinct Clinical Subtype of Neurodegeneration with Brain Iron Accumulation. Am J Hum Genet. 2011; 89: 543550. DOI: 10.1016/j.ajhg.2011.09.007
  38. 38Gregory A, Lotia M, Jeong SY, Fox R, Zhen D, Sanford L, et al. Autosomal dominant mitochondrial membrane protein-associated neurodegeneration (MPAN). Mol Genet Genomic Med. 2019; 7: e00736. DOI: 10.1002/mgg3.736
  39. 39Venco P, Bonora M, Giorgi C, Papaleo E, Iuso A, Prokisch H, et al. Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca2+. Front Genet. 2015; 6: 185. DOI: 10.3389/fgene.2015.00185
  40. 40Gregory A, Klopstock T, Kmiec T, Hogarth P, Hayflick SJ. Mitochondrial Membrane Protein-Associated Neurodegeneration. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Mirzaa G, et al. (Eds.), GeneReviews® [Internet]. University of Washington: Seattle (WA); 2021.
  41. 41Olgiati S, Doğu O, Tufekcioglu Z, Diler Y, Saka E, Gultekin M, et al. The p.Thr11Met mutation in c19orf12 is frequent among adult Turkish patients with MPAN. Parkinsonism Relat Disord. 2017; 39: 6470. DOI: 10.1016/j.parkreldis.2017.03.012
  42. 42Haack TB, Hogarth P, Kruer MC, Gregory A, Wieland T, Schwarzmayr T, et al. Exome Sequencing Reveals De Novo WDR45 Mutations Causing a Phenotypically Distinct, X-Linked Dominant Form of NBIA. Am J Hum Genet. 2012; 91: 11441149. DOI: 10.1016/j.ajhg.2012.10.019
  43. 43Saitsu H, Nishimura T, Muramatsu K, Kodera H, Kumada S, Sugai K, et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet. 2013; 45: 445449. DOI: 10.1038/ng.2562
  44. 44Seibler P, Burbulla LF, Dulovic M, Zittel S, Heine J, Schmidt T, et al. Iron overload is accompanied by mitochondrial and lysosomal dysfunction in WDR45 mutant cells. Brain. 2018; 141: 30523064. DOI: 10.1093/brain/awy230
  45. 45Xiong Q, Li X, Li W, Chen G, Xiao H, Li P, et al. WDR45 Mutation Impairs the Autophagic Degradation of Transferrin Receptor and Promotes Ferroptosis. Front Mol Biosci. 2021; 8: 645831. DOI: 10.3389/fmolb.2021.645831
  46. 46Wilson JL, Gregory A, Kurian MA, Bushlin I, Mochel F, Emrick L, et al. Consensus clinical management guideline for beta-propeller protein-associated neurodegeneration. Dev Med Child Neurol; n/a. DOI: 10.1111/dmcn.14980
  47. 47Hayflick SJ, Kruer MC, Gregory A, Haack TB, Kurian MA, Houlden HH, et al. Beta-propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain. 2013; 136: 17081717. DOI: 10.1093/brain/awt095
  48. 48Paudel R, Li A, Wiethoff S, Bandopadhyay R, Bhatia K, de Silva R, et al. Neuropathology of Beta-propeller protein associated neurodegeneration (BPAN): a new tauopathy. Acta Neuropathol Commun. 2015; 3: 39. DOI: 10.1186/s40478-015-0221-3
  49. 49Schneider SA, Paisan-Ruiz C, Quinn NP, Lees AJ, Houlden H, Hardy J, et al. ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord. 2010; 25: 979984. DOI: 10.1002/mds.22947
  50. 50Cozzi A, Santambrogio P, Ripamonti M, Rovida E, Levi S. Pathogenic mechanism and modeling of neuroferritinopathy. Cell Mol Life Sci. 2021; 78: 33553367. DOI: 10.1007/s00018-020-03747-w
  51. 51Curtis ARJ, Fey C, Morris CM, Bindoff LA, Ince PG, Chinnery PF, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet. 2001; 28: 350354. DOI: 10.1038/ng571
  52. 52Miyajima H. Aceruloplasminemia. In: Micheli FE, LeWitt PA (Eds.), Chorea: Causes and Management, 199209. London: Springer; 2014. DOI: 10.1007/978-1-4471-6455-5_11
  53. 53Alazami AM, Al-Saif A, Al-Semari A, Bohlega S, Zlitni S, Alzahrani F, et al. Mutations in C2orf37, Encoding a Nucleolar Protein, Cause Hypogonadism, Alopecia, Diabetes Mellitus, Mental Retardation, and Extrapyramidal Syndrome. Am J Hum Genet. 2008; 83: 684691. DOI: 10.1016/j.ajhg.2008.10.018
  54. 54Dusi S, Valletta L, Haack TB, Tsuchiya Y, Venco P, Pasqualato S, et al. Exome Sequence Reveals Mutations in CoA Synthase as a Cause of Neurodegeneration with Brain Iron Accumulation. Am J Hum Genet. 2014; 94: 1122. DOI: 10.1016/j.ajhg.2013.11.008
  55. 55Evers C, Seitz A, Assmann B, Opladen T, Karch S, Hinderhofer K, et al. Diagnosis of CoPAN by whole exome sequencing: Waking up a sleeping tiger’s eye. Am J Med Genet A. 2017; 173: 18781886. DOI: 10.1002/ajmg.a.38252
  56. 56Horvath R, Lewis-Smith D, Douroudis K, Duff J, Keogh M, Pyle A, et al. SCP2 mutations and neurodegeneration with brain iron accumulation. Neurology. 2015; 85: 19091911. DOI: 10.1212/WNL.0000000000002157
  57. 57Jaberi E, Rohani M, Shahidi GA, Nafissi S, Arefian E, Soleimani M, et al. Identification of mutation in GTPBP2 in patients of a family with neurodegeneration accompanied by iron deposition in the brain. Neurobiol Aging. 2016; 38: 216.e11–216.e18. DOI: 10.1016/j.neurobiolaging.2015.10.034
  58. 58Bertoli-Avella AM, Garcia-Aznar JM, Brandau O, Al-Hakami F, Yüksel Z, Marais A, et al. Biallelic inactivating variants in the GTPBP2 gene cause a neurodevelopmental disorder with severe intellectual disability. Eur J Hum Genet. 2018; 26: 592598. DOI: 10.1038/s41431-018-0097-3
  59. 59Roubertie A, Hieu N, Roux C-J, Leboucq N, Manes G, Charif M, et al. AP4 deficiency: A novel form of neurodegeneration with brain iron accumulation? Neurol Genet. 2018; 4: e217. DOI: 10.1212/NXG.0000000000000217
  60. 60Ndayisaba A, Kaindlstorfer C, Wenning GK. Iron in Neurodegeneration – Cause or Consequence? Front Neurosci. 2019; 13: 180. DOI: 10.3389/fnins.2019.00180
  61. 61Hider RC, Hoffbrand AV. The Role of Deferiprone in Iron Chelation. N Engl J Med. 2018; 379: 21402150. DOI: 10.1056/NEJMra1800219
  62. 62Abbruzzese G, Cossu G, Balocco M, Marchese R, Murgia D, Melis M, et al. A pilot trial of deferiprone for neurodegeneration with brain iron accumulation. Haematologica. 2011; 96: 17081711. DOI: 10.3324/haematol.2011.043018
  63. 63Forni GL, Balocco M, Cremonesi L, Abbruzzese G, Parodi RC, Marchese R. Regression of symptoms after selective iron chelation therapy in a case of neurodegeneration with brain iron accumulation. Mov Disord. 2008; 23: 904907. DOI: 10.1002/mds.22002
  64. 64Kwiatkowski A, Ryckewaert G, Jissendi Tchofo P, Moreau C, Vuillaume I, Chinnery PF, et al. Long-term improvement under deferiprone in a case of neurodegeneration with brain iron accumulation. Parkinsonism Relat Disord. 2012; 18: 110112. DOI: 10.1016/j.parkreldis.2011.06.024
  65. 65Fonderico M, Laudisi M, Andreasi NG, Bigoni S, Lamperti C, Panteghini C, et al. Patient Affected by Beta-Propeller Protein-Associated Neurodegeneration: A Therapeutic Attempt with Iron Chelation Therapy. Front Neurol. 2017; 8: 385. DOI: 10.3389/fneur.2017.00385
  66. 66Lim S-Y, Tan AH, Ahmad-Annuar A, Schneider SA, Bee PC, Lim JL, et al. A Patient with Beta-Propeller Protein-Associated Neurodegeneration: Treatment with Iron Chelation Therapy. J Mov Disord. 2018; 11: 8992. DOI: 10.14802/jmd.17082
  67. 67Zorzi G, Zibordi F, Chiapparini L, Bertini E, Russo L, Piga A, et al. Iron-related MRI images in patients with pantothenate kinase-associated neurodegeneration (PKAN) treated with deferiprone: results of a phase II pilot trial. Mov Disord. 2011; 26: 17561759. DOI: 10.1002/mds.23751
  68. 68Cossu G, Abbruzzese G, Matta G, Murgia D, Melis M, Ricchi V, et al. Efficacy and safety of deferiprone for the treatment of pantothenate kinase-associated neurodegeneration (PKAN) and neurodegeneration with brain iron accumulation (NBIA): results from a four years follow-up. Parkinsonism Relat Disord. 2014; 20: 651654. DOI: 10.1016/j.parkreldis.2014.03.002
  69. 69Rohani M, Razmeh S, Shahidi GA, Alizadeh E, Orooji M. A pilot trial of deferiprone in pantothenate kinase-associated neurodegeneration patients. Neurol Int. 2017; 9: 7279. DOI: 10.4081/ni.2017.7279
  70. 70Vroegindeweij LHP, Boon AJW, Wilson JHP, Langendonk JG. Effects of iron chelation therapy on the clinical course of aceruloplasminemia: an analysis of aggregated case reports. Orphanet J Rare Dis. 2020; 15: 105. DOI: 10.1186/s13023-020-01385-w
  71. 71Klopstock T, Tricta F, Neumayr L, Karin I, Zorzi G, Fradette C, et al. Safety and efficacy of deferiprone for pantothenate kinase-associated neurodegeneration: a randomised, double-blind, controlled trial and an open-label extension study. Lancet Neurol. 2019; 18: 631642. DOI: 10.1016/S1474-4422(19)30142-5
  72. 72Kalman B, Lautenschlaeger R, Kohlmayer F, Büchner B, Kmiec T, Klopstock T, et al. An international registry for neurodegeneration with brain iron accumulation. Orphanet J Rare Dis. 2012; 7: 66. DOI: 10.1186/1750-1172-7-66
  73. 73Castelnau P, Cif L, Valente EM, Vayssiere N, Hemm S, Gannau A, et al. Pallidal stimulation improves pantothenate kinase–associated neurodegeneration. Ann Neurol. 2005; 57: 738741. DOI: 10.1002/ana.20457
  74. 74Mikati MA, Yehya A, Darwish H, Karam P, Comair Y. Deep brain stimulation as a mode of treatment of early onset pantothenate kinase-associated neurodegeneration. Eur J Paediatr Neurol. 2009; 13: 6164. DOI: 10.1016/j.ejpn.2008.01.006
  75. 75Timmermann L, Pauls KAM, Wieland K, Jech R, Kurlemann G, Sharma N, et al. Dystonia in neurodegeneration with brain iron accumulation: outcome of bilateral pallidal stimulation. Brain. 2010; 133: 701712. DOI: 10.1093/brain/awq022
  76. 76Lumsden DE, Kaminska M, Gimeno H, Tustin K, Baker L, Perides S, et al. Proportion of life lived with dystonia inversely correlates with response to pallidal deep brain stimulation in both primary and secondary childhood dystonia. Dev Med Child Neurol. 2013; 55: 567574. DOI: 10.1111/dmcn.12117
  77. 77Artusi CA, Dwivedi A, Romagnolo A, Bortolani S, Marsili L, Imbalzano G, et al. Differential response to pallidal deep brain stimulation among monogenic dystonias: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2020; 91: 426433. DOI: 10.1136/jnnp-2019-322169
  78. 78Cif L, Kurian MA, Gonzalez V, Garcia-Ptacek S, Roujeau T, Gelisse P, et al. Atypical PLA2G6-Associated Neurodegeneration: Social Communication Impairment, Dystonia and Response to Deep Brain Stimulation. Mov Disord Clin Pract. 2014; 1: 128131. DOI: 10.1002/mdc3.12030
  79. 79Justesen CR, Penn RD, Kroin JS, Egel RT. Stereotactic pallidotomy in a child with Hallervorden—Spatz disease: Case report. J Neurosurg. 1999; 90: 551554. DOI: 10.3171/jns.1999.90.3.0551
  80. 80Levi V, Zorzi G, Messina G, Romito L, Tramacere I, Dones I, et al. Deep brain stimulation versus pallidotomy for status dystonicus: a single-center case series. J Neurosurg. 2019; 134: 197207. DOI: 10.3171/2019.10.JNS191691
  81. 81Keegan MT, Flick RP, Matsumoto JY, Davis DH, Lanier WL. Anesthetic Management For Two-Stage Computer-Assisted, Stereotactic Thalamotomy in a Child With Hallervorden-Spatz Disease. J Neurosurg Anesthesiol. 2000; 12: 107111. DOI: 10.1097/00008506-200004000-00006
  82. 82Tsukamoto H, Inui K, Taniike M, Nishimoto J, Midorikawa M, Yoshimine T, et al. A case of Hallervorden-Spatz disease: Progressive and intractable dystonia controlled by bilateral thalamotomy. Brain Dev. 1992; 14: 269272. DOI: 10.1016/S0387-7604(12)80246-4
  83. 83Balas I, Kovacs N, Hollody K. Staged bilateral stereotactic pallidothalamotomy for life-threatening dystonia in a child with Hallervorden–Spatz disease. Mov Disord. 2006; 21: 8285. DOI: 10.1002/mds.20655
  84. 84Centen LM, Oterdoom DLM, Tijssen MAJ, Lesman-Leegte I, Egmond ME van, Dijk JMC van. Bilateral Pallidotomy for Dystonia: A Systematic Review. Mov Disord. 2021; 36: 547557. DOI: 10.1002/mds.28384
  85. 85Hogarth P, Kurian MA, Gregory A, Csányi B, Zagustin T, Kmiec T, et al. Consensus clinical management guideline for pantothenate kinase-associated neurodegeneration (PKAN). Mol Genet Metab. 2017; 120: 278287. DOI: 10.1016/j.ymgme.2016.11.004
  86. 86Albright AL, Barry MJ, Fasick P, Barron W, Shultz B. Continuous intrathecal baclofen infusion for symptomatic generalized dystonia. Neurosurgery. 1996; 38: 934938. DOI: 10.1097/00006123-199605000-00015
  87. 87Dachy B, Dan B. Electrophysiological assessment of the effect of intrathecal baclofen in dystonic children. Clin Neurophysiol. 2004; 115: 774778. DOI: 10.1016/j.clinph.2003.11.008
  88. 88Woon K, Tsegaye M, Vloeberghs MH. The role of intrathecal baclofen in the management of primary and secondary dystonia in children. Br J Neurosurg. 2007; 21: 355358. DOI: 10.1080/02688690701392899
  89. 89Pratini NR, Sweeters N, Vichinsky E, Neufeld JA. Treatment of classic pantothenate kinase-associated neurodegeneration with deferiprone and intrathecal baclofen. Am J Phys Med Rehabil. 2013; 92: 728733. DOI: 10.1097/PHM.0b013e318282d209
  90. 90Albright AL, Ferson SS. Intraventricular baclofen for dystonia: techniques and outcomes: Clinical article. J Neurosurg Pediatr. 2009; 3: 1114. DOI: 10.3171/2008.10.PEDS0847
  91. 91Dressler D, Wittstock M, Benecke R. Botulinum toxin for treatment of jaw opening dystonia in Hallervorden-Spatz syndrome. Eur Neurol. 2001; 45: 287288. DOI: 10.1159/000052146
  92. 92Crisci C, Esposito M. Efficacy of botulinum toxin A treatment in a case of pantothenate kinase associated neurodegeneration (PKAN). BMJ Case Rep; 2011. DOI: 10.1136/bcr.07.2011.4514
  93. 93Lin C-I, Chen K-L, Kuan T-S, Lin S-H, Lin W-P, Lin Y-C. Botulinum toxin injection to improve functional independence and to alleviate parenting stress in a child with advanced pantothenate kinase-associated neurodegeneration. Medicine (Baltimore). 2018; 97: e10709. DOI: 10.1097/MD.0000000000010709
  94. 94Dangel T, Kmieć T, Januszaniec A, Ważny B. Palliative care in 9 children with neurodegeneration with brain iron accumulation. Neurol Sci. 2020; 41: 653660. DOI: 10.1007/s10072-019-04099-5
  95. 95Lopez WOC, Kluge Schroeder H, Santana Neville I, Jacobsen Teixeira M, Costa Barbosa D, Assumpçao de Mônaco B, et al. Intrathecal morphine therapy in the management of status dystonicus in neurodegeneration brain iron accumulation type 1. Pediatr Neurosurg. 2015; 50: 9498. DOI: 10.1159/000370005
  96. 96Sharma LK, Subramanian C, Yun M-K, Frank MW, White SW, Rock CO, et al. A therapeutic approach to pantothenate kinase associated neurodegeneration. Nat Commun. 2018; 9: 4399. DOI: 10.1038/s41467-018-06703-2
  97. 97Elbaum D, Beconi MG, Monteagudo E, Marco AD, Quinton MS, Lyons KA, et al. Fosmetpantotenate (RE-024), a phosphopantothenate replacement therapy for pantothenate kinase-associated neurodegeneration: Mechanism of action and efficacy in nonclinical models. PLOS ONE. 2018; 13: e0192028. DOI: 10.1371/journal.pone.0192028
  98. 98Christou Y-P, Tanteles GA, Kkolou E, Ormiston A, Konstantopoulos K, Beconi M, et al. Open-Label Fosmetpantotenate, a Phosphopantothenate Replacement Therapy in a Single Patient with Atypical PKAN. Case Rep Neurol Med. 2017; 3247034. DOI: 10.1155/2017/3247034
  99. 99Klopstock T, Videnovic A, Bischoff AT, Bonnet C, Cif L, Comella C, et al. Fosmetpantotenate Randomized Controlled Trial in Pantothenate Kinase-Associated Neurodegeneration. Mov Disord. 2021; 36: 13421352. DOI: 10.1002/mds.28392
  100. 100Rana A, Seinen E, Siudeja K, Muntendam R, Srinivasan B, Want JJ van der, et al. Pantethine rescues a Drosophila model for pantothenate kinase–associated neurodegeneration. Proc Natl Acad Sci. 2010; 107: 69886993. DOI: 10.1073/pnas.0912105107
  101. 101Zizioli D, Tiso N, Guglielmi A, Saraceno C, Busolin G, Giuliani R, et al. Knock-down of pantothenate kinase 2 severely affects the development of the nervous and vascular system in zebrafish, providing new insights into PKAN disease. Neurobiol Dis. 2016; 85: 3548. DOI: 10.1016/j.nbd.2015.10.010
  102. 102Brunetti D, Dusi S, Giordano C, Lamperti C, Morbin M, Fugnanesi V, et al. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model. Brain. 2014; 137: 5768. DOI: 10.1093/brain/awt325
  103. 103Chang X, Zhang J, Jiang Y, Yao B, Wang J, Wu Y. Pilot trial on the efficacy and safety of pantethine in children with pantothenate kinase-associated neurodegeneration: a single-arm, open-label study. Orphanet J Rare Dis. 2020; 15: 248. DOI: 10.1186/s13023-020-01530-5
  104. 104Srinivasan B, Baratashvili M, van der Zwaag M, Kanon B, Colombelli C, Lambrechts RA, et al. Extracellular 4′-phosphopantetheine is a source for intracellular coenzyme A synthesis. Nat Chem Biol. 2015; 11: 784792. DOI: 10.1038/nchembio.1906
  105. 105Auciello G, Di Marco A, Gonzalez Paz O, Malancona S, Harper S, Beconi M, et al. Cyclic Phosphopantothenic Acid Prodrugs for Treatment of Pantothenate Kinase-Associated Neurodegeneration. J Med Chem. 2020; 63: 1578515801. DOI: 10.1021/acs.jmedchem.0c01531
  106. 106Di Meo I, Colombelli C, Srinivasan B, de Villiers M, Hamada J, Jeong SY, et al. Acetyl-4′-phosphopantetheine is stable in serum and prevents phenotypes induced by pantothenate kinase deficiency. Sci Rep. 2017; 7: 11260. DOI: 10.1038/s41598-017-11564-8
  107. 107Orellana DI, Santambrogio P, Rubio A, Yekhlef L, Cancellieri C, Dusi S, et al. Coenzyme A corrects pathological defects in human neurons of PANK2-associated neurodegeneration. EMBO Mol Med. 2016; 8: 11971211. DOI: 10.15252/emmm.201606391
  108. 108Adams D, Midei M, Dastgir J, Flora C, Molinari RJ, Heerinckx F, et al. Treatment of infantile neuroaxonal dystrophy with RT001: A di-deuterated ethyl ester of linoleic acid: Report of two cases. JIMD Rep. 2020; 54: 5460. DOI: 10.1002/jmd2.12116
  109. 109Lin G, Lee P-T, Chen K, Mao D, Tan KL, Zuo Z, et al. Phospholipase PLA2G6, a Parkinsonism-Associated Gene, Affects Vps26 and Vps35, Retromer Function, and Ceramide Levels, Similar to α-Synuclein Gain. Cell Metab. 2018; 28: 605618.e6. DOI: 10.1016/j.cmet.2018.05.019
  110. 110Wan H, Wang Q, Chen X, Zeng Q, Shao Y, Fang H, et al. WDR45 contributes to neurodegeneration through regulation of ER homeostasis and neuronal death. Autophagy. 2020; 16: 531547. DOI: 10.1080/15548627.2019.1630224
  111. 111Zanardi A, Conti A, Cremonesi M, D’Adamo P, Gilberti E, Apostoli P, et al. Ceruloplasmin replacement therapy ameliorates neurological symptoms in a preclinical model of aceruloplasminemia. EMBO Mol Med. 2018; 10: 91106. DOI: 10.15252/emmm.201708361
  112. 112Kuhn J, Bewermeyer H, Miyajima H, Takahashi Y, Kuhn KF, Hoogenraad TU. Treatment of symptomatic heterozygous aceruloplasminemia with oral zinc sulphate. Brain Dev. 2007; 29: 450453. DOI: 10.1016/j.braindev.2007.01.001
  113. 113Kim J, Hu C, Moufawad El Achkar C, Black LE, Douville J, Larson A, et al. Patient-Customized Oligonucleotide Therapy for a Rare Genetic Disease. N Engl J Med. 2019; 381: 16441652. DOI: 10.1056/NEJMoa1813279
  114. 114Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019; 18: 358378. DOI: 10.1038/s41573-019-0012-9
  115. 115Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med. 2017; 377: 17131722. DOI: 10.1056/NEJMoa1706198
  116. 116Pearson T, Gupta N, Viehoever A, Grijalvo-Perez A, Imamura-Ching J, Seo Y, et al. Gene therapy for AADC Deficiency. Ann Neurol. 2018; 84: S308.
  117. 117Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019; 576: 149157. DOI: 10.1038/s41586-019-1711-4
  118. 118Whaler S. Novel Strategies in NBIA: A Gene Therapy Approach for PLA2G6-Associated Neurodegeneration. Dr. Thesis UCL Univ. Coll. Lond. 2018; 1280.
  119. 119Brunetti D, Dusi S, Morbin M, Uggetti A, Moda F, D’Amato I, et al. Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model. Hum Mol Genet. 2012; 21: 52945305. DOI: 10.1093/hmg/dds380
  120. 120Letko A, Strugnell B, Häfliger IM, Paris JM, Waine K, Drögemüller C, et al. Compound heterozygous PLA2G6 loss-of-function variants in Swaledale sheep with neuroaxonal dystrophy. Mol Genet Genomics. 2021; 296: 235242. DOI: 10.1007/s00438-020-01742-1
  121. 121Pietersz KL, Martier RM, Baatje MS, Liefhebber JM, Brouwers CC, Pouw SM, et al. Transduction patterns in the CNS following various routes of AAV-5-mediated gene delivery. Gene Ther. 2021; 28: 435446. DOI: 10.1038/s41434-020-0178-0
  122. 122Taghian T, Marosfoi MG, Puri AS, Cataltepe OguzI, King RM, Diffie EB, et al. A Safe and Reliable Technique for CNS Delivery of AAV Vectors in the Cisterna Magna. Mol Ther. 2020; 28: 411421. DOI: 10.1016/j.ymthe.2019.11.012
  123. 123Hogarth P. Neurodegeneration with Brain Iron Accumulation: Diagnosis and Management. J Mov Disord. 2015; 8: 113. DOI: 10.14802/jmd.14034
  124. 124Gregory A, Hayflick S. Neurodegeneration with Brain Iron Accumulation Disorders Overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Mirzaa G, et al. (Eds.), GeneReviews®. Seattle, WA: University of Washington, Seattle; 2019.
DOI: https://doi.org/10.5334/tohm.661 | Journal eISSN: 2160-8288
Language: English
Submitted on: Aug 31, 2021
Accepted on: Nov 5, 2021
Published on: Nov 24, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Robert V.V. Spaull, Audrey K.S. Soo, Penelope Hogarth, Susan J. Hayflick, Manju A. Kurian, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.