Have a personal or library account? Click to login
GABAergic Modulation in Movement Related Oscillatory Activity: A Review of the Effect Pharmacologically and with Aging Cover

GABAergic Modulation in Movement Related Oscillatory Activity: A Review of the Effect Pharmacologically and with Aging

Open Access
|Nov 2021

References

  1. 1Hall SD, Stanford IM, Yamawaki N, McAllister CJ, Ronnqvist KC, Woodhall GL, et al. The role of GABAergic modulation in motor function related neuronal network activity. Neuroimage. 2011; 56(3): 150610. DOI: 10.1016/j.neuroimage.2011.02.025
  2. 2Boecker H. Imaging the role of GABA in movement disorders. Curr Neurol Neurosci Rep. 2013; 13(10): 385. DOI: 10.1007/s11910-013-0385-9
  3. 3Gaetz W, Edgar JC, Wang DJ, Roberts TP. Relating MEG measured motor cortical oscillations to resting gamma-aminobutyric acid (GABA) concentration. Neuroimage. 2011; 55(2): 61621. DOI: 10.1016/j.neuroimage.2010.12.077
  4. 4Elias WJ, Shah BB. Tremor. JAMA. 2014; 311(9): 94854. DOI: 10.1001/jama.2014.1397
  5. 5Prokic EJ, Stanford IM, Woodhall GL, Williams AC, Hall SD. Bradykinesia Is Driven by Cumulative Beta Power During Continuous Movement and Alleviated by Gabaergic Modulation in Parkinson’s Disease. Front Neurol. 2019; 10: 1298. DOI: 10.3389/fneur.2019.01298
  6. 6Amtage F, Feuerstein TJ, Meier S, Prokop T, Piroth T, Pinsker MO. Hypokinesia upon Pallidal Deep Brain Stimulation of Dystonia: Support of a GABAergic Mechanism. Front Neurol. 2013; 4: 198. DOI: 10.3389/fneur.2013.00198
  7. 7Muthukumaraswamy SD, Myers JF, Wilson SJ, Nutt DJ, Lingford-Hughes A, Singh KD, et al. The effects of elevated endogenous GABA levels on movement-related network oscillations. Neuroimage. 2013; 66: 3641. DOI: 10.1016/j.neuroimage.2012.10.054
  8. 8Gastaut H, Terzian H, Gastaut Y. Study of a little electroencephalographic activity: rolandic arched rhythm. Mars Med. 1952; 89(6): 296310.
  9. 9Cohen D. Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science. 1972; 175(4022): 6646. DOI: 10.1126/science.175.4022.664
  10. 10Pfurtscheller G, Berghold A. Patterns of cortical activation during planning of voluntary movement. Electroencephalogr Clin Neurophysiol. 1989; 72(3): 2508. DOI: 10.1016/0013-4694(89)90250-2
  11. 11Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999; 110(11): 184257. DOI: 10.1016/S1388-2457(99)00141-8
  12. 12Pfurtscheller G, Graimann B, Huggins JE, Levine SP, Schuh LA. Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin Neurophysiol. 2003; 114(7): 122636. DOI: 10.1016/S1388-2457(03)00067-1
  13. 13Pfurtscheller G. Graphical display and statistical evaluation of event-related desynchronization (ERD). Electroencephalogr Clin Neurophysiol. 1977; 43(5): 75760. DOI: 10.1016/0013-4694(77)90092-X
  14. 14Pfurtscheller G. Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalogr Clin Neurophysiol. 1992; 83(1): 629. DOI: 10.1016/0013-4694(92)90133-3
  15. 15Sieghart W, Sperk G. Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem. 2002; 2(8): 795816. DOI: 10.2174/1568026023393507
  16. 16Chebib M, Johnston GA. The ‘ABC’ of GABA receptors: a brief review. Clin Exp Pharmacol Physiol. 1999; 26(11): 93740. DOI: 10.1046/j.1440-1681.1999.03151.x
  17. 17Solomon VR, Tallapragada VJ, Chebib M, Johnston GAR, Hanrahan JR. GABA allosteric modulators: An overview of recent developments in non-benzodiazepine modulators. Eur J Med Chem. 2019; 171: 43461. DOI: 10.1016/j.ejmech.2019.03.043
  18. 18Tremblay R, Lee S, Rudy B. GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits. Neuron. 2016; 91(2): 26092. DOI: 10.1016/j.neuron.2016.06.033
  19. 19Sun Q, Li X, Ren M, Zhao M, Zhong Q, Ren Y, et al. A whole-brain map of long-range inputs to GABAergic interneurons in the mouse medial prefrontal cortex. Nat Neurosci. 2019; 22(8): 135770. DOI: 10.1038/s41593-019-0429-9
  20. 20Lacey MG, Gooding-Williams G, Prokic EJ, Yamawaki N, Hall SD, Stanford IM, et al. Spike firing and IPSPs in layer V pyramidal neurons during beta oscillations in rat primary motor cortex (M1) in vitro. PLoS One. 2014; 9(1): e85109. DOI: 10.1371/journal.pone.0085109
  21. 21Yamawaki N, Stanford IM, Hall SD, Woodhall GL. Pharmacologically induced and stimulus evoked rhythmic neuronal oscillatory activity in the primary motor cortex in vitro. Neuroscience. 2008; 151(2): 38695. DOI: 10.1016/j.neuroscience.2007.10.021
  22. 22Roopun AK, Middleton SJ, Cunningham MO, LeBeau FE, Bibbig A, Whittington MA, et al. A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex. Proc Natl Acad Sci U S A. 2006; 103(42): 1564650. DOI: 10.1073/pnas.0607443103
  23. 23Prokic EJ, Weston C, Yamawaki N, Hall SD, Jones RS, Stanford IM, et al. Cortical oscillatory dynamics and benzodiazepine-site modulation of tonic inhibition in fast spiking interneurons. Neuropharmacology. 2015; 95: 192205. DOI: 10.1016/j.neuropharm.2015.03.006
  24. 24Shink E, Smith Y. Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA- and glutamate-containing terminals in the squirrel monkey. J Comp Neurol. 1995; 358(1): 11941. DOI: 10.1002/cne.903580108
  25. 25Smith Y, Wichmann T, DeLong MR. Synaptic innervation of neurones in the internal pallidal segment by the subthalamic nucleus and the external pallidum in monkeys. J Comp Neurol. 1994; 343(2): 297318. DOI: 10.1002/cne.903430209
  26. 26Chen L, Yung WH. Effects of the GABA-uptake inhibitor tiagabine in rat globus pallidus. Exp Brain Res. 2003; 152(2): 2639. DOI: 10.1007/s00221-003-1549-7
  27. 27Chen L, Savio Chan C, Yung WH. Electrophysiological and behavioral effects of zolpidem in rat globus pallidus. Exp Neurol. 2004; 186(2): 21220. DOI: 10.1016/j.expneurol.2003.11.003
  28. 28Hirano T. GABA and Synaptic Transmission in the Cerebellum. Handbook of the Cerebellum and Cerebellar Disorders. 2013; 88193. DOI: 10.1007/978-94-007-1333-8_36
  29. 29Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci. 2018; 19(6): 33850. DOI: 10.1038/s41583-018-0002-7
  30. 30Kaneda M, Farrant M, Cull-Candy SG. Whole-cell and single-channel currents activated by GABA and glycine in granule cells of the rat cerebellum. J Physiol. 1995; 485(Pt2): 41935. DOI: 10.1113/jphysiol.1995.sp020739
  31. 31Holdefer RN, Houk JC, Miller LE. Movement-related discharge in the cerebellar nuclei persists after local injections of GABA(A) antagonists. J Neurophysiol. 2005; 93(1): 3543. DOI: 10.1152/jn.00603.2004
  32. 32van Wijk BC, Beek PJ, Daffertshofer A. Neural synchrony within the motor system: what have we learned so far? Front Hum Neurosci. 2012; 6: 252. DOI: 10.3389/fnhum.2012.00252
  33. 33Erbil N, Ungan P. Changes in the alpha and beta amplitudes of the central EEG during the onset, continuation, and offset of long-duration repetitive hand movements. Brain Res. 2007; 1169: 4456. DOI: 10.1016/j.brainres.2007.07.014
  34. 34Ritter P, Moosmann M, Villringer A. Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum Brain Mapp. 2009; 30(4): 116887. DOI: 10.1002/hbm.20585
  35. 35Picazio S, Veniero D, Ponzo V, Caltagirone C, Gross J, Thut G, et al. Prefrontal control over motor cortex cycles at beta frequency during movement inhibition. Curr Biol. 2014; 24(24): 29405. DOI: 10.1016/j.cub.2014.10.043
  36. 36Chung JW, Ofori E, Misra G, Hess CW, Vaillancourt DE. Beta-band activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance. Neuroimage. 2017; 144(Pt A): 16473. DOI: 10.1016/j.neuroimage.2016.10.008
  37. 37Pfurtscheller G, Andrew C. Event-Related changes of band power and coherence: methodology and interpretation. J Clin Neurophysiol. 1999; 16(6): 5129. DOI: 10.1097/00004691-199911000-00003
  38. 38Jenson D, Bowers AL, Harkrider AW, Thornton D, Cuellar M, Saltuklaroglu T. Temporal dynamics of sensorimotor integration in speech perception and production: independent component analysis of EEG data. Front Psychol. 2014; 5: 656. DOI: 10.3389/fpsyg.2014.00656
  39. 39Heinrichs-Graham E, Wilson TW. Is an absolute level of cortical beta suppression required for proper movement? Magnetoencephalographic evidence from healthy aging. Neuroimage. 2016; 134: 51421. DOI: 10.1016/j.neuroimage.2016.04.032
  40. 40Huo X, Xiang J, Wang Y, Kirtman EG, Kotecha R, Fujiwara H, et al. Gamma oscillations in the primary motor cortex studied with MEG. Brain Dev. 2010; 32(8): 61924. DOI: 10.1016/j.braindev.2009.09.021
  41. 41Jurkiewicz MT, Gaetz WC, Bostan AC, Cheyne D. Post-movement beta rebound is generated in motor cortex: evidence from neuromagnetic recordings. Neuroimage. 2006; 32(3): 12819. DOI: 10.1016/j.neuroimage.2006.06.005
  42. 42Crone NE, Miglioretti DL, Gordon B, Lesser RP. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain. 1998; 121(12): 230115. DOI: 10.1093/brain/121.12.2301
  43. 43Seeber M, Scherer R, Muller-Putz GR. EEG Oscillations Are Modulated in Different Behavior-Related Networks during Rhythmic Finger Movements. J Neurosci. 2016; 36(46): 1167181. DOI: 10.1523/JNEUROSCI.1739-16.2016
  44. 44Cross KA, Malekmohammadi M, Woo Choi J, Pouratian N. Movement-related changes in pallidocortical synchrony differentiate action execution and observation in humans. Clin Neurophysiol. 2021. DOI: 10.1101/2020.05.27.117416
  45. 45Yanagisawa T, Yamashita O, Hirata M, Kishima H, Saitoh Y, Goto T, et al. Regulation of motor representation by phase-amplitude coupling in the sensorimotor cortex. J Neurosci. 2012; 32(44): 1546775. DOI: 10.1523/JNEUROSCI.2929-12.2012
  46. 46Salmelin R, Hamalainen M, Kajola M, Hari R. Functional segregation of movement-related rhythmic activity in the human brain. Neuroimage. 1995; 2(4): 23743. DOI: 10.1006/nimg.1995.1031
  47. 47Cassim F, Monaca C, Szurhaj W, Bourriez JL, Defebvre L, Derambure P, et al. Does post-movement beta synchronization reflect an idling motor cortex? Neuroreport. 2001; 12(17): 385963. DOI: 10.1097/00001756-200112040-00051
  48. 48Hall SD, Barnes GR, Furlong PL, Seri S, Hillebrand A. Neuronal network pharmacodynamics of GABAergic modulation in the human cortex determined using pharmaco-magnetoencephalography. Hum Brain Mapp. 2010; 31(4): 58194. DOI: 10.1002/hbm.20889
  49. 49Baumgarten TJ, Oeltzschner G, Hoogenboom N, Wittsack HJ, Schnitzler A, Lange J. Beta Peak Frequencies at Rest Correlate with Endogenous GABA+/Cr Concentrations in Sensorimotor Cortex Areas. PLoS One. 2016; 11(6): e0156829. DOI: 10.1371/journal.pone.0156829
  50. 50Baker MR, Baker SN. The effect of diazepam on motor cortical oscillations and corticomuscular coherence studied in man. J Physiol. 2003; 546(Pt 3): 93142. DOI: 10.1113/jphysiol.2002.029553
  51. 51Cheng CH, Tsai SY, Liu CY, Niddam DM. Automatic inhibitory function in the human somatosensory and motor cortices: An MEG-MRS study. Sci Rep. 2017; 7(1): 4234. DOI: 10.1038/s41598-017-04564-1
  52. 52Nutt D, Wilson S, Lingford-Hughes A, Myers J, Papadopoulos A, Muthukumaraswamy S. Differences between magnetoencephalographic (MEG) spectral profiles of drugs acting on GABA at synaptic and extrasynaptic sites: a study in healthy volunteers. Neuropharmacology. 2015; 88: 15563. DOI: 10.1016/j.neuropharm.2014.08.017
  53. 53Pechadre JC, Beudin P, Trolese JF, Gabet JY, Eschalier A. A comparison of the electroencephalographic spectral modifications induced by diazepam and by hydroxyzine. J Int Med Res. 1993; 21(5): 23442. DOI: 10.1177/030006059302100502
  54. 54Jensen O, Goel P, Kopell N, Pohja M, Hari R, Ermentrout B. On the human sensorimotor-cortex beta rhythm: sources and modeling. Neuroimage. 2005; 26(2): 34755. DOI: 10.1016/j.neuroimage.2005.02.008
  55. 55Muthukumaraswamy SD, Edden RA, Jones DK, Swettenham JB, Singh KD. Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci U S A. 2009; 106(20): 835661. DOI: 10.1073/pnas.0900728106
  56. 56Jahanshahi M, Rothwell JC. Inhibitory dysfunction contributes to some of the motor and non-motor symptoms of movement disorders and psychiatric disorders. Philos Trans R Soc Lond B Biol Sci. 2017; 372(1718). DOI: 10.1098/rstb.2016.0198
  57. 57Gironell A. The GABA Hypothesis in Essential Tremor: Lights and Shadows. Tremor Other Hyperkinet Mov (N Y). 2014; 4: 254. DOI: 10.5334/tohm.229
  58. 58Berman BD, Pollard RT, Shelton E, Karki R, Smith-Jones PM, Miao Y. GABAA Receptor Availability Changes Underlie Symptoms in Isolated Cervical Dystonia. Front Neurol. 2018; 9: 188. DOI: 10.3389/fneur.2018.00188
  59. 59Groth CL, Brown M, Honce JM, Shelton E, Sillau SH, Berman BD. Cervical Dystonia Is Associated With Aberrant Inhibitory Signaling Within the Thalamus. Front Neurol. 2020; 11: 575879. DOI: 10.3389/fneur.2020.575879
  60. 60Tapper S, Goransson N, Lundberg P, Tisell A, Zsigmond P. A pilot study of essential tremor: cerebellar GABA+/Glx ratio is correlated with tremor severity. Cerebellum Ataxias. 2020; 7: 8. DOI: 10.1186/s40673-020-00116-y
  61. 61Garibotto V, Romito LM, Elia AE, Soliveri P, Panzacchi A, Carpinelli A, et al. In vivo evidence for GABA(A) receptor changes in the sensorimotor system in primary dystonia. Mov Disord. 2011; 26(5): 8527. DOI: 10.1002/mds.23553
  62. 62Lopes EF, Roberts BM, Siddorn RE, Clements MA, Cragg SJ. Inhibition of Nigrostriatal Dopamine Release by Striatal GABAA and GABAB Receptors. J Neurosci. 2019; 39(6): 105865. DOI: 10.1523/JNEUROSCI.2028-18.2018
  63. 63Huang AR, Mallet L, Rochefort CM, Eguale T, Buckeridge DL, Tamblyn R. Medication-related falls in the elderly: causative factors and preventive strategies. Drugs Aging. 2012; 29(5): 35976. DOI: 10.2165/11599460-000000000-00000
  64. 64O’Brien CP. Benzodiazepine use, abuse, and dependence. J Clin Psychiatry. 2005; (66 Suppl 2): 2833.
  65. 65Premoli I, Bergmann TO, Fecchio M, Rosanova M, Biondi A, Belardinelli P, et al. The impact of GABAergic drugs on TMS-induced brain oscillations in human motor cortex. Neuroimage. 2017; 163: 112. DOI: 10.1016/j.neuroimage.2017.09.023
  66. 66Ferland MC, Therrien-Blanchet JM, Proulx S, Klees-Themens G, Bacon BA, Dang Vu TT, et al. Transcranial Magnetic Stimulation and H(1)-Magnetic Resonance Spectroscopy Measures of Excitation and Inhibition Following Lorazepam Administration. Neuroscience. 2021; 452: 23546. DOI: 10.1016/j.neuroscience.2020.11.011
  67. 67Spooner RK, Wiesman AI, Proskovec AL, Heinrichs-Graham E, Wilson TW. Rhythmic Spontaneous Activity Mediates the Age-Related Decline in Somatosensory Function. Cereb Cortex. 2019; 29(2): 6808. DOI: 10.1093/cercor/bhx349
  68. 68Rossiter HE, Davis EM, Clark EV, Boudrias MH, Ward NS. Beta oscillations reflect changes in motor cortex inhibition in healthy ageing. Neuroimage. 2014; 91: 3605. DOI: 10.1016/j.neuroimage.2014.01.012
  69. 69Gaetz W, Macdonald M, Cheyne D, Snead OC. Neuromagnetic imaging of movement-related cortical oscillations in children and adults: age predicts post-movement beta rebound. Neuroimage. 2010; 51(2): 792807. DOI: 10.1016/j.neuroimage.2010.01.077
  70. 70Gao F, Edden RA, Li M, Puts NA, Wang G, Liu C, et al. Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA levels. Neuroimage. 2013; 78: 7582. DOI: 10.1016/j.neuroimage.2013.04.012
  71. 71Cuypers K, Verstraelen S, Maes C, Hermans L, Hehl M, Heise KF, et al. Task-related measures of short-interval intracortical inhibition and GABA levels in healthy young and older adults: A multimodal TMS-MRS study. Neuroimage. 2020; 208: 116470. DOI: 10.1016/j.neuroimage.2019.116470
  72. 72Hermans L, Leunissen I, Pauwels L, Cuypers K, Peeters R, Puts NAJ, et al. Brain GABA Levels Are Associated with Inhibitory Control Deficits in Older Adults. J Neurosci. 2018; 38(36): 784451. DOI: 10.1523/JNEUROSCI.0760-18.2018
  73. 73Hermans L, Levin O, Maes C, van Ruitenbeek P, Heise KF, Edden RAE, et al. GABA levels and measures of intracortical and interhemispheric excitability in healthy young and older adults: an MRS-TMS study. Neurobiol Aging. 2018; 65: 16877. DOI: 10.1016/j.neurobiolaging.2018.01.023
  74. 74Mooney RA, Cirillo J, Byblow WD. GABA and primary motor cortex inhibition in young and older adults: a multimodal reliability study. J Neurophysiol. 2017; 118(1): 42533. DOI: 10.1152/jn.00199.2017
  75. 75Gehringer JE, Arpin DJ, Heinrichs-Graham E, Wilson TW, Kurz MJ. Practice modulates motor-related beta oscillations differently in adolescents and adults. J Physiol. 2019; 597(12): 320316. DOI: 10.1113/JP277326
  76. 76Stagg CJ, Bestmann S, Constantinescu AO, Moreno LM, Allman C, Mekle R, et al. Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J Physiol. 2011; 589(Pt 23): 584555. DOI: 10.1113/jphysiol.2011.216978
  77. 77Guerra A, Asci F, Zampogna A, D’Onofrio V, Berardelli A, Suppa A. The effect of gamma oscillations in boosting primary motor cortex plasticity is greater in young than older adults. Clin Neurophysiol. 2021; 132(6): 135866. DOI: 10.1016/j.clinph.2021.01.032
  78. 78Nowak M, Hinson E, van Ede F, Pogosyan A, Guerra A, Quinn A, et al. Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABAA Inhibition: A tACS-TMS Study. J Neurosci. 2017; 37(17): 448192. DOI: 10.1523/JNEUROSCI.0098-17.2017
  79. 79Zhang Z, Jing Y, Ma Y, Duan D, Li B, Holscher C, et al. Driving GABAergic neurons optogenetically improves learning, reduces amyloid load and enhances autophagy in a mouse model of Alzheimer’s disease. Biochem Biophys Res Commun. 2020; 525(4): 92835. DOI: 10.1016/j.bbrc.2020.03.004
  80. 80Burianova H, Marstaller L, Rich AN, Williams MA, Savage G, Ryan M, et al. Motor neuroplasticity: A MEG-fMRI study of motor imagery and execution in healthy ageing. Neuropsychologia. 2020; 146: 107539. DOI: 10.1016/j.neuropsychologia.2020.107539
  81. 81Murray JB. Effects of valium and librium on human psychomotor and cognitive functions. Genet Psychol Monogr. 1984; 109(2D Half): 16797.
  82. 82Orgs G, Dombrowski JH, Heil M, Jansen-Osmann P. Expertise in dance modulates alpha/beta event-related desynchronization during action observation. Eur J Neurosci. 2008; 27(12): 33804. DOI: 10.1111/j.1460-9568.2008.06271.x
  83. 83Del Percio C, Infarinato F, Iacoboni M, Marzano N, Soricelli A, Aschieri P, et al. Movement-related desynchronization of alpha rhythms is lower in athletes than non-athletes: a high-resolution EEG study. Clin Neurophysiol. 2010; 121(4): 48291. DOI: 10.1016/j.clinph.2009.12.004
  84. 84Johari K, Behroozmand R. Event-related desynchronization of alpha and beta band neural oscillations predicts speech and limb motor timing deficits in normal aging. Behav Brain Res. 2020; 393: 112763. DOI: 10.1016/j.bbr.2020.112763
  85. 85Heinrichs-Graham E, Hoburg JM, Wilson TW. The peak frequency of motor-related gamma oscillations is modulated by response competition. Neuroimage. 2018; 165: 2734. DOI: 10.1016/j.neuroimage.2017.09.059
  86. 86Tewarie P, Hunt BAE, O’Neill GC, Byrne A, Aquino K, Bauer M, et al. Relationships Between Neuronal Oscillatory Amplitude and Dynamic Functional Connectivity. Cereb Cortex. 2019; 29(6): 266881. DOI: 10.1093/cercor/bhy136
  87. 87Pakenham DO, Quinn AJ, Fry A, Francis ST, Woolrich MW, Brookes MJ, et al. Post-stimulus beta responses are modulated by task duration. Neuroimage. 2020; 206: 116288. DOI: 10.1016/j.neuroimage.2019.116288
  88. 88Fry A, Mullinger KJ, O’Neill GC, Barratt EL, Morris PG, Bauer M, et al. Modulation of post-movement beta rebound by contraction force and rate of force development. Hum Brain Mapp. 2016; 37(7): 2493511. DOI: 10.1002/hbm.23189
  89. 89Bostan AC, Dum RP, Strick PL. Functional Anatomy of Basal Ganglia Circuits with the Cerebral Cortex and the Cerebellum. Prog Neurol Surg. 2018; 33: 5061. DOI: 10.1159/000480748
  90. 90Chiken S, Nambu A. High-frequency pallidal stimulation disrupts information flow through the pallidum by GABAergic inhibition. J Neurosci. 2013; 33(6): 226880. DOI: 10.1523/JNEUROSCI.4144-11.2013
  91. 91O’Riordan S, Raymond D, Lynch T, Saunders-Pullman R, Bressman SB, Daly L, et al. Age at onset as a factor in determining the phenotype of primary torsion dystonia. Neurology. 2004; 63(8): 14236. DOI: 10.1212/01.WNL.0000142035.26034.C2
  92. 92Prasad S, Bhalsing KS, Jhunjhunwala K, Lenka A, Binu VS, Pal PK. Phenotypic Variability of Essential Tremor Based on the Age at Onset. Can J Neurol Sci. 2019; 46(2): 1928. DOI: 10.1017/cjn.2018.384
  93. 93Delamarre A, Meissner WG. Epidemiology, environmental risk factors and genetics of Parkinson’s disease. Presse Med. 2017; 46(2 Pt 1): 17581. DOI: 10.1016/j.lpm.2017.01.001
  94. 94Milardi D, Quartarone A, Bramanti L, Anastasi G, Bertino S, Basile GA, et al. The Cortico-Basal Ganglia-Cerebellar Network: Past, Present and Future Perspectives. Front Syst Neurosci. 2019; 13. DOI: 10.3389/fnsys.2019.00061
  95. 95McCarthy MM, Moore-Kochlacs C, Gu X, Boyden ES, Han X, Kopell N. Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proc Natl Acad Sci U S A. 2011; 108(28): 116205. DOI: 10.1073/pnas.1107748108
  96. 96Udupa K, Chen R. The mechanisms of action of deep brain stimulation and ideas for the future development. Prog Neurobiol. 2015; 133: 2749. DOI: 10.1016/j.pneurobio.2015.08.001
  97. 97Brazhnik E, McCoy AJ, Novikov N, Hatch CE, Walters JR. Ventral Medial Thalamic Nucleus Promotes Synchronization of Increased High Beta Oscillatory Activity in the Basal Ganglia-Thalamocortical Network of the Hemiparkinsonian Rat. J Neurosci. 2016; 36(15): 4196208. DOI: 10.1523/JNEUROSCI.3582-15.2016
  98. 98Prescott IA, Dostrovsky JO, Moro E, Hodaie M, Lozano AM, Hutchison WD. Reduced paired pulse depression in the basal ganglia of dystonia patients. Neurobiol Dis. 2013; 51: 21421. DOI: 10.1016/j.nbd.2012.11.012
  99. 99Luo F, Kim LH, Magown P, Noor MS, Kiss ZHT. Long-Lasting Electrophysiological After-Effects of High-Frequency Stimulation in the Globus Pallidus: Human and Rodent Slice Studies. J Neurosci. 2018; 38(50): 1073446. DOI: 10.1523/JNEUROSCI.0785-18.2018
  100. 100Wilson TW, Slason E, Asherin R, Kronberg E, Reite ML, Teale PD, et al. An extended motor network generates beta and gamma oscillatory perturbations during development. Brain Cogn. 2010; 73(2): 7584. DOI: 10.1016/j.bandc.2010.03.001
DOI: https://doi.org/10.5334/tohm.655 | Journal eISSN: 2160-8288
Language: English
Submitted on: Aug 6, 2021
Accepted on: Sep 26, 2021
Published on: Nov 10, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Christopher L. Groth, Arun Singh, Qiang Zhang, Brian D. Berman, Nandakumar S. Narayanan, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.