References
- 1ArrudaWO, TeiveHA Ataxias cerebelares hereditárias. Do martelo ao gen. Arq Neuropsiquiatr 1997;55(3 B):666–676. doi: 10.1590/S0004-282X19970004000279629425
- 2DöhlingerS, HauserT, BorkertJ, LuftAR, SchulzJB Magnetic resonance imaging in spinocerebellar ataxias. Cerebellum 2008;7(2):204–214. doi: 10.1007/s12311-008-0025-018418677
- 3DeistungA, StefanescuMR, ErnstTM, et al. Structural and functional magnetic resonance imaging of the cerebellum: considerations for assessing cerebellar ataxias. Cerebellum 2016;15(1):21–25. doi: 10.1007/s12311-015-0738-926521073
- 4TeiveHAG, AshizawaT Primary and secondary ataxias. Curr Opin Neurol 2015;28:413–422. doi: 10.1097/WCO.000000000000022726132530
- 5SchölsL, BauerP, SchmidtT, SchulteT, RiessO Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 2004;3:291–304. doi: 10.1016/S1474-4422(04)00737-915099544
- 6AshizawaT, ÖzG, PaulsonHL Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol 2018;14(10):590–605. doi: 10.1038/s41582-018-0051-630131520
- 7KlockgetherT The clinical diagnosis of autosomal dominant spinocerebellar ataxias. Cerebellum 2008;7(2):101–105. doi: 10.1007/s12311-008-0023-218418679
- 8GiordanoI, HarmuthF, JacobiH, et al. Clinical and genetic characteristics of sporadic adult-onset degenerative ataxia. Neurology 2017;89(10):1043–1049. doi: 10.1212/WNL.000000000000431128794257
- 9PaulsonHL, ShakkottaiVG, ClarkHB, OrrHT Polyglutamine spinocerebellar ataxias-from genes to potential treatments. Nat Rev Neurosci 2017;18(10):613–626. doi: 10.1038/nrn.2017.9228855740
- 10AdanyeguhIM, PerlbargV, HenryPG, et al. Autosomal dominant cerebellar ataxias: imaging biomarkers with high effect sizes. NeuroImage Clin 2018;19:858–867. doi: 10.1016/j.nicl.2018.06.01129922574
- 11KlaesA, ReckziegelE, FrancaMC, et al. MR imaging in spinocerebellar ataxias: a systematic review. Am J Neuroradiol 2016;37(8):1405–1412. doi: 10.3174/ajnr.A476027173364
- 12CoarelliG, BriceA, DurrA Recent advances in understanding dominant spinocerebellar ataxias from clinical and genetic points of view [version 1; peer review: 3 approved]. F1000Research 2018;7(F1000 Faculty Rev):1781. doi: 10.12688/f1000research.15788.1
- 13GoelG, PalPK, RavishankarS, et al. Gray matter volume deficits in spinocerebellar ataxia: an optimized voxel based morphometric study. Park Relat Disord 2011;17(7):521–527. doi: 10.1016/j.parkreldis.2011.04.008
- 14MascalchiM, TosettiM, PlasmatiR, et al. Proton magnetic resonance spectroscopy in an Italian family with spinocerebellar ataxia type 1. Ann Neurol 1998;43(2):244–252. doi: 10.1002/ana.4104302159485066
- 15MandelliML, de SimoneT, MinatiL, BruzzoneMG, MariottiC, FancelluR, et al. Diffusion tensor imaging of spinocerebellar ataxias types 1 and 2. Am J Neuroradiol 2007;28(10):1996–2000. doi: 10.3174/ajnr.A071617998418
- 16NamekawaM, HondaJ, ShimazakiH “Hot Cross Bun” sign associated with SCA1. Intern Med 2015;54(7):859–860. doi: 10.2169/internalmedicine.54.346025832958
- 17MartinsCR, MartinezARM, de RezendeTJR, et al. Spinal cord damage in spinocerebellar ataxia type 1. Cerebellum 2017;16(4):792–796. doi: 10.1007/s12311-017-0854-928386793
- 18Martins JuniorCR, MartinezARM, VasconcelosIF, et al. Structural signature in SCA1: clinical correlates, determinants and natural history. J Neurol 2018;265(12):2949–2959. doi: 10.1007/s12311-017-0854-930324307
- 19GiuffridaS, SaponaraR, RestivoDA, et al. Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients. J Neurol 1999;246(5):383–388. doi: 10.1007/s00415005036810399871
- 20BürkK, SkalejM, DichgansJ Pontine MRI hyperintensities (“the cross sign”) are not pathognomonic for multiple system atrophy (MSA). Mov Disord 2001;16(3):535–535.11391754
- 21Lastres-BeckerI, RübU, AuburgerG Spinocerebellar ataxia 2 (SCA2). Cerebellum 2008;7(2):115–124. doi: 10.1007/s12311-008-0019-y18418684
- 22ReetzK, Rodríguez-LabradaR, DoganI, et al. Brain atrophy measures in preclinical and manifest spinocerebellar ataxia type 2. Ann Clin Transl Neurol 2018;5(2):128–137. doi: 10.1002/acn3.50429468174
- 23OlivitoG, LupoM, IacobacciC, et al. Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2. J Neurol 2018;265(3):597–606. doi: 10.1007/s00415-018-8738-629356974
- 24MoroA, MunhozRP, ArrudaWO, RaskinS, MoscovichM, TeiveHAG Spinocerebellar ataxia type 3: subphenotypes in a cohort of brazilian patients. Arq Neuropsiquiatr 2014;72(9):659–662. doi: 10.1590/0004-282X2014012925252228
- 25CoutinhoP, AndradeC Autosomal dominant system degeneration in Portuguese families of the Azores Islands. A new genetic disorder involving cerebellar, pyramidal, extrapyramidal and spinal cord motor functions. Neurology 1978;28(7):703–709. doi: 10.1212/WNL.28.7.703566869
- 26PedrosoJL, Braga-NetoP, RadvanyJ, BarsottiniOGP Machado-Joseph disease in Brazil: from the first descriptions to the emergence as the most common spinocerebellar ataxia. Arq Neuropsiquiatr 2012;70(8):630–632. doi: 10.1590/S0004-282X201200080001322899036
- 27PaulsonH Machado-Joseph disease/spinocerebellar ataxia type 3. Handb Clin Neurol 2012;103:437–449. doi: 10.1016/B978-0-444-51892-7.00027-921827905
- 28RezendeTJR, de PaivaJLR, MartinezARM, et al. Structural signature of SCA3: from presymptomatic to late disease stages. Ann Neurol 2018;84(3):401–408. doi: 10.1002/ana.2529730014526
- 29FahlCN, BrancoLMT, BergoFPG, D’AbreuA, Lopes-CendesI, FrançaMC Spinal cord damage in Machado-Joseph disease. The Cerebellum 2015;14(2):128–132. doi: 10.1007/s12311-014-0619-725370748
- 30KlockgetherT, SkalejM, WedekindD, et al. Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain 1998;121(9):1687–1693. doi: 10.1093/brain/121.9.16879762957
- 31StefanescuMR, DohnalekM, MaderwaldS, et al. Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich’s ataxia. Brain 2015;138(5):1182–1197. doi: 10.1093/brain/awv06425818870
- 32LukasC, SchölsL, BellenbergB, et al. Dissociation of grey and white matter reduction in spinocerebellar ataxia type 3 and 6: a voxel-based morphometry study. Neurosci Lett 2006;408(3):230–235. doi: 10.1016/j.neulet.2006.09.00717005321
- 33PedrosoJL, RiveroRLM, BarsottiniOGP " Hot cross bun" sign resembling multiple system atrophy in a patient with Machado-Joseph disease. Arq Neuropsiquiatr 2013;71(10):824. doi: 10.1590/0004-282X2013013224212526
- 34JacobiH, HauserTK, GiuntiP, et al. Spinocerebellar ataxia types 1, 2, 3 and 6: the clinical spectrum of ataxia and morphometric brainstem and cerebellar findings. Cerebellum 2012;11(1):155–166. doi: 10.1007/s12311-011-0292-z21701895
- 35HuangSR, WuY Te, JaoCW, et al. CAG repeat length does not associate with the rate of cerebellar degeneration in spinocerebellar ataxia type 3. NeuroImage Clin 2017;13:97–105. doi: 10.1016/j.nicl.2016.11.00727942452
- 36CamargosST, MarquesW
Jr , SantosAC Brainstem and cerebellum volumetric analysis of Machado Joseph disease patients. Arq Neuropsiquiatr 2011;69(2B):292–296. doi: 10.1590/S0004-282X201100030000521625753 - 37D’AbreuA, FrançaMC, YasudaCL, CamposBAG, Lopes-CendesI, CendesF Neocortical atrophy in Machado-Joseph disease: a longitudinal neuroimaging study. J Neuroimaging 2012;22(3):285–291. doi: 10.1111/j.1552-6569.2011.00614.x21699609
- 38KangJ-S, KleinJC, BaudrexelS, DeichmannR, NolteD, HilkerR White matter damage is related to ataxia severity in SCA3. J Neurol 2014;261(2):291–299. doi: 10.1007/s00415-013-7186-624272589
- 39LukasC, HahnHK, BellenbergB, et al. Spinal cord atrophy in spinocerebellar ataxia type 3 and 6. J Neurol 2008;255(8):1244–1249. doi: 10.1007/s00415-008-0907-618506570
- 40EichlerL, BellenbergB, HahnHK, KösterO, SchölsL, LukasC Quantitative assessment of brainstem and cerebellar atrophy in spinocerebellar ataxia types 3 and 6: impact on clinical status. Am J Neuroradiol 2011;32(5):890–897. doi: 10.3174/ajnr.A238721372168
- 41RentiyaZ, KhanNS, ErgunE, YingSH, DesmondJE Distinct cerebellar regions related to motor and cognitive performance in SCA6 patients. Neuropsychologia 2017;107:25–30. doi: 10.1016/j.neuropsychologia.2017.10.03629100951
- 42Albuquerque MVCde, PedrosoJL, Braga NetoP, BarsottiniOGP Phenotype variability and early onset ataxia symptoms in spinocerebellar ataxia type 7: comparison and correlation with other spinocerebellar ataxias. Arq Neuropsiquiatr 2015;73(1):18–21. doi: 10.1590/0004-282X2014019225608122
- 43BangOY, LeePH, KimSY, KimHJ, HuhK Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis. J Neurol Neurosurg Psychiatry 2004;75(10):1452–1456. doi: 10.1136/jnnp.2003.02981915377695
- 44Hernandez-CastilloCR, GalvezV, DiazR, Fernandez-RuizJ Specific cerebellar and cortical degeneration correlates with ataxia severity in spinocerebellar ataxia type 7. Brain Imaging Behav 2016;10(1):252–257. doi: 10.1007/s11682-015-9389-125917872
- 45AlcauterS, BarriosFA, DiazR, Fernandez-RuizJ Gray and white matter alterations in spinocerebellar ataxia type 7: an in vivo DTI and VBM study. Neuroimage 2011;55(1):1–7. doi: 10.1016/j.neuroimage.2010.12.01421147232
- 46TeiveHAG, ArrudaWO, RaskinS, AshizawaT, WerneckLC The history of spinocerebellar ataxia type 10 in Brazil: travels of a gene. Arq Neuropsiquiatr 2007;65(4A):965–968. doi: 10.1590/S0004-282X200700060000818094855
- 47MoroA, MunhozRP, MoscovichM, et al. Nonmotor symptoms in patients with spinocerebellar ataxia type 10. Cerebellum 2017;16(5–6):938–944. doi: 10.1007/s12311-017-0869-228589261
- 48MoroA, AfonsoH, TeiveG Cognitive impairment in Spinocerebellar ataxia type 10. Dement Neuropsychol 2016;10(4):310–314. doi: 10.1590/s1980-5764-2016dn100400929213474
- 49RasmussenA, MatsuuraT, RuanoL, et al. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol 2001;50(2):234–239. doi: 10.1002/ana.108111506407
- 50UyamaE, KondoI, UchinoM, FukushimaT, MurayamaN, KuwanoA, et al. Dentatorubral-pallidoluysian atrophy (DRPLA): clinical, genetic, and neuroradiologic studies in a family. J Neurol Sci 1995;130(2):146–153. doi: 10.1016/0022-510X(95)00019-X8586978
- 51KinT, HiranoM, TaokaT, YamadaM, MizutaniT, OyanagiK Global and region-specific analyses of apparent diffusion coefficient in dentatorubral-pallidoluysian atrophy. Am J Neuroradiol 2011;27(7):1463–1436.
- 52SugiyamaA, SatoN, NakataY, et al. Clinical and magnetic resonance imaging features of elderly onset dentatorubral–pallidoluysian atrophy. J Neurol 2018;265(2):322–329. doi: 10.1007/s00415-017-8705-729236168
- 53KnightMA, GardnerRJMK, BahloM, et al. Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain 2014;127(5):1172–1181. doi: 10.1093/brain/awh139
- 54ZamboninJL, BellomoA, Ben-PaziH, et al. Spinocerebellar ataxia type 29 due to mutations in ITPR1: a case series and review of this emerging congenital ataxia. Orphanet J Rare Dis 2017;12(1):121. doi: 10.1186/s13023-017-0672-728659154
- 55NibbelingEAR, DuarriA, Verschuuren-BemelmansCC, et al. Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 2017;140(11):2860–2878. doi: 10.1093/brain/awx25129053796
- 56AdanyeguhIM, HenryP-G, NguyenTM, et al. In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3, and 7. Mov Disord 2015;30(5):662–670. doi: 10.1002/mds.2618125773989
- 57WangP-S, ChenH-C, WuH-M, LirngJ-F, WuY-T, SoongB-W Association between proton magnetic resonance spectroscopy measurements and CAG repeat number in patients with spinocerebellar ataxias 2, 3, or 6. DermautB, editor. PLoS One 2012;7(10):e47479. doi: 10.1371/journal.pone.004747923094053
- 58OhJS, OhM, ChungSJ, KimJS Cerebellum-specific 18F-FDG PET analysis for the detection of subregional glucose metabolism changes in spinocerebellar ataxia. Neuroreport 2014;25(15):1198–1202. doi: 10.1097/WNR.000000000000024725144395
- 59WüllnerU, ReimoldM, AbeleM, et al. Dopamine transporter positron emission tomography in spinocerebellar ataxias type 1, 2, 3, and 6. Arch Neurol 2005;62(8):1280–1285. doi: 10.1001/archneur.62.8.128016087769
- 60AguiarP, PardoJ, AriasM, et al. PET and MRI detection of early and progressive neurodegeneration in spinocerebellar ataxia type 36. Mov Disord 2017;32(2):264–273. doi: 10.1002/mds.2685427862279
- 61BorroniB, Di GregorioE, OrsiL, et al. Clinical and neuroradiological features of spinocerebellar ataxia 38 (SCA38). Parkinsonism Relat Disord 2016;28:80–86. doi: 10.1016/j.parkreldis.2016.04.03027143115
- 62MinatiL, GrisoliM, BruzzoneMG MR spectroscopy, functional MRI, and diffusion-tensor imaging in the aging braIn: a conceptual review. J Geriatr Psychiatry Neurol 2007;20:3–21. doi: 10.1177/089198870629708917341766
