Have a personal or library account? Click to login

References

  1. 1JankovicJ Tourette’s syndrome. New Engl J Med 2001;345:11841192. doi: 10.1056/NEJMra01003211642235
  2. 2HartmannA, WorbeY Tourette syndrome: clinical spectrum, mechanisms and personalized treatments. Current Opin Neurol 2018;31:504509. doi: 10.1097/WCO.0000000000000575
  3. 3RobertsonMM, EapenV, SingerH S, MartinoD, ScharfJ M, PaschouP, et al. Gilles de la Tourette syndrome. Nat Rev Dis Primers 2017;3:16097. doi: 10.1038/nrdp.2016.9728150698
  4. 4ComingsDE, ComingsBG, DevorEJ, CloningerCR Detection of major gene for Gilles de la Tourette syndrome. Am J Hum Genet 1984;36:586600.6587774
  5. 5PriceRA, KiddKK, CohenDJ, PaulsDL, LeckmanJF A twin study of Tourette syndrome. Arch Gen Psychiatr 1985;42:815820. doi: 10.1001/archpsyc.1985.017903100770113860194
  6. 6PriceRA, PaulsDL, KrugerSD, CaineED Family data support a dominant major gene for Tourette syndrome. Psychiatr Res 1988;24:251261. doi: 10.1016/0165-1781(88)90107-2
  7. 7PaulsDL, FernandezTV, MathewsCA, StateMW, ScharfJM The -inheritance of Tourette disorder: a review. J Obsessive Compuls Relat Disord 2014;3:380385. doi: 10.1016/j.jocrd.2014.06.00325506544
  8. 8BrainstormC, AnttilaV, Bulik-SullivanB, FinucaneHK, WaltersRK, BrasJ, et al. Analysis of shared heritability in common disorders of the brain. Science 2018;360:eaap8757. doi: 10.1126/science.aap875729930110
  9. 9ClarkeRA, LeeS, EapenV Pathogenetic model for Tourette syndrome delineates overlap with related neurodevelopmental disorders including Autism. Transl Psychiatry 2012;2:e158. doi: 10.1038/tp.2012.7522948383
  10. 10HirschtrittME, DarrowSM, IllmannC, OsieckiL, GradosM, SandorP, et al. Genetic and phenotypic overlap of specific obsessive-compulsive and -attention-deficit/hyperactive subtypes with Tourette syndrome. Psychol Med 2018:48(2):279293. doi: 10.1017/S003329171700167228651666
  11. 11Ercan-SencicekAG, StillmanAA, GhoshAK, BilguvarK, O’RoakBJ, MasonCE, et al. L-histidine decarboxylase and Tourette’s syndrome. New Engl J Med 2010;362:19011908. doi: 10.1056/NEJMoa090700620445167
  12. 12AbelsonJF, KwanKY, O’RoakBJ, BaekDY, StillmanAA, MorganTM, et al. Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science 2005;310:317320. doi: 10.1126/science.111650216224024
  13. 13WillseyAJ, FernandezTV, YuD, KingRA, DietrichA, XingJ, et al. De Novo coding variants are strongly associated with Tourette disorder. Neuron 2017;94:486499. doi: 10.1016/j.neuron.2017.04.02428472652
  14. 14EriguchiY, KuwabaraH, InaiA, KawakuboY, NishimuraF, KakiuchiC, et al. Identification of candidate genes involved in the etiology of sporadic Tourette syndrome by exome sequencing. Am J Med Genet B Neuropsychiatr Genet 2017;174:712723. doi: 10.1002/ajmg.b.3255928608572
  15. 15NagA, BochukovaEG, KremeyerB, CampbellDD, MullerH, Valencia-DuarteAV, et al. CNV analysis in Tourette syndrome implicates large genomic rearrangements in COL8A1 and NRXN1. PLoS One 2013;8:e59061. doi: 10.1371/journal.pone.005906123533600
  16. 16FernandezTV, SandersSJ, YurkiewiczIR, Ercan-SencicekAG, KimYS, FishmanDO, et al. Rare copy number variants in tourette syndrome disrupt genes in histaminergic pathways and overlap with autism. Biological Psychiatry 2012;71:392402. doi: 10.1016/j.biopsych.2011.09.03422169095
  17. 17SundaramSK, HuqAM, WilsonBJ, ChuganiHT Tourette syndrome is associated with recurrent exonic copy number variants. Neurology 2010;74:15831590. doi: 10.1212/WNL.0b013e3181e0f14720427753
  18. 18ScharfJM, YuD, MathewsCA, NealeBM, StewartSE, FagernessJA, et al. Genome-wide association study of Tourette’s syndrome. Mol Psychiatr 2013;18:721728. doi: 10.1038/mp.2012.69
  19. 19AlexanderJ, PotamianouH, XingJ, DengL, KaragiannidisI, TsetsosF, et al. Targeted re-sequencing approach of candidate genes implicates rare potentially functional variants in Tourette syndrome etiology. Front Neurosci 2016;10:428. doi: 10.3389/fnins.2016.0042827708560
  20. 20KaragiannidisI, DehningS, SandorP, TarnokZ, RizzoR, WolanczykT, et al. Support of the histaminergic hypothesis in Tourette syndrome: association of the histamine decarboxylase gene in a large sample of families. J Med Genet 2013;50:760764. doi: 10.1136/jmedgenet-2013-10163723825391
  21. 21LeiJ, DengX, ZhangJ, SuL, XuH, LiangH, et al. Mutation screening of the HDC gene in Chinese Han patients with Tourette syndrome. Am J Med Genet B Neuropsychiatr Genet 2012;159B:7276. doi: 10.1002/ajmg.b.3200322095709
  22. 22WangS, MandellJD, KumarY, SunN, MorrisMT, ArbelaezJ, et al. De Novo sequence and copy number variants are strongly associated with Tourette disorder and implicate cell polarity in pathogenesis. Cell Rep 2018;24:34413454. doi: 10.1016/j.celrep.2018.08.08230257206
  23. 23ArugaJ, YokotaN, MikoshibaK Human SLITRK family genes: genomic organization and expression profiling in normal brain and brain tumor tissue. Gene 2003;315:8794. doi: 10.1016/S0378-1119(03)00715-714557068
  24. 24ArugaJ, MikoshibaK Identification and characterization of Slitrk, a novel neuronal transmembrane protein family controlling neurite outgrowth. Mol Cell Neurosci 2003;24:117129. doi: 10.1016/S1044-7431(03)00129-514550773
  25. 25MahAK SLITRK5, a protein that links striatal deficits to OCD-like behaviours in mice. Clin Genet 2010;78:350352. doi: 10.1111/j.1399-0004.2010.01507.x20718795
  26. 26ShmelkovSV, HormigoA, JingD, ProencaCC, BathKG, MildeT, et al. Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nature Med 2010;16:598602, 591p following 602. doi: 10.1038/nm.212520418887
  27. 27ProencaCC, GaoKP, ShmelkovSV, RafiiS, LeeFS Slitrks as emerging candidate genes involved in neuropsychiatric disorders. Trends Neurosci 2011;34:143153. doi: 10.1016/j.tins.2011.01.00121315458
  28. 28KatayamaK, YamadaK, OrnthanalaiVG, InoueT, OtaM, MurphyNP, et al. Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities. Mol Psychiatr 2010;15:177184. doi: 10.1038/mp.2008.97
  29. 29XuM, LiL, OhtsuH, PittengerC Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear. Neurosci Lett 2015;595:5053. doi: 10.1016/j.neulet.2015.03.06725841792
  30. 30BaldanLC, WilliamsKA, GallezotJD, PogorelovV, RapanelliM, CrowleyM, et al. Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice. Neuron 2014;81:7790. doi: 10.1016/j.neuron.2013.10.05224411733
  31. 31PittengerC Histidine decarboxylase knockout mice as a model of the pathophysiology of Tourette syndrome and related conditions. Handb Exp Pharmacol 2017;241:189215. doi: 10.1007/164_2016_12728233179
  32. 32MaiaTV, ConceicaoVA Dopaminergic disturbances in Tourette syndrome: an integrative account. Biol Psychiatr 2018;84:332344. doi: 10.1016/j.biopsych.2018.02.1172
  33. 33WorbeY, MalletL, GolmardJL, BeharC, DurifF, JalenquesI, et al. Repetitive behaviours in patients with Gilles de la Tourette syndrome: tics, compulsions, or both? PLoS One 2010;5:e12959. doi: 10.1371/journal.pone.001295920885982
  34. 34GnirkeA, MelnikovA, MaguireJ, RogovP, LeProustEM, BrockmanW, et al. Solution hybrid selection with ultra-long oligonucleotides for massively -parallel targeted sequencing. Nat Biotechnol 2009;27:182189. doi: 10.1038/nbt.152319182786
  35. 35MiH, MuruganujanA, HuangX, EbertD, MillsC, GuoX., et al. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat Protoc 2019;14:703721. doi: 10.1038/s41596-019-0128-830804569
  36. 36LekM, KarczewskiKJ, MinikelEV, SamochaKE, BanksE, FennellT, et al. Exome Aggregation Consortium. Analysis of protein-coding genetic -variation in 60,706 humans. Nature 2016;536(7616):285291. doi: 10.1038/nature19057.27535533
  37. 37de CalbiacH, DabacanA, MarsanE, TostivintH, DevienneG, IshidaS, et al. Depdc5 knockdown causes mTOR-dependent motor hyperactivity in zebrafish. Ann Clin Transl Neurol 2018;5:510523. doi: 10.1002/acn3.54229761115
  38. 38OzomaroU, CaiG, KajiwaraY, YoonS, MakarovV, DelormeR, et al. Characterization of SLITRK1 variation in obsessive-compulsive disorder. PLoS One 2013;8:e70376. doi: 10.1371/journal.pone.007037623990902
  39. 39DrapeauP, Saint-AmantL, BussRR, ChongM, McDearmidJR, BrusteinE Development of the locomotor network in zebrafish. Prog Neurobiol 2002;68:85111. doi: 10.1016/S0301-0082(02)00075-812450489
  40. 40AlvarezFA, Rodriguez-MartinI, Gonzalez-NunezV, Marron Fernandez de VelascoE, Gonzalez SarmientoR, RodriguezRE New kappa opioid receptor from zebrafish Danio rerio. Neurosci Lett 2006;405:9499. doi: 10.1016/j.neulet.2006.06.02816842913
  41. 41Sanchez-SimonFM, ArenzanaFJ, RodriguezRE In vivo effects of -morphine on neuronal fate and opioid receptor expression in zebrafish embryos. Eur J Neurosci 2010;32:550559. doi: 10.1111/j.1460-9568.2010.07317.x20646065
  42. 42LohHH, SmithAP Molecular characterization of opioid receptors. Annu Rev Pharmacol Toxicol 1990;30:123147. doi: 10.1146/annurev.pa.30.040190.0010112160790
  43. 43CrowleyNA, KashTL Kappa opioid receptor signaling in the braIn: circuitry and implications for treatment. Progr Neuro Psychopharmacol Biol Psychiatr 2015;62:5160. doi: 10.1016/j.pnpbp.2015.01.001
  44. 44LutzPE, KiefferBL The multiple facets of opioid receptor function: implications for addiction. Curr Opin Neurobiol 2013;23:473479. doi: 10.1016/j.conb.2013.02.00523453713
  45. 45ChartoffEH, MavrikakiM Sex differences in Kappa Opioid receptor function and their potential impact on addiction. Front Neurosci 2015;9:466. doi: 10.3389/fnins.2015.0046626733781
  46. 46GillmanMA, SandykR The endogenous opioid system in Gilles de la Tourette syndrome. Med Hypotheses 1986;19:371378. doi: 10.1016/0306-9877(86)90112-X2872580
  47. 47KurlanR, MajumdarL, DeeleyC, MudholkarGS, PlumbS, ComoPG A controlled trial of propoxyphene and naltrexone in patients with Tourette’s syndrome. Ann Neurol 1991;30:1923. doi: 10.1002/ana.4103001051681781
  48. 48ErenbergG, LedermanRJ Naltrexone and Tourette’s syndrome. Ann Neurol 1992;31:574. doi: 10.1002/ana.410310520
  49. 49SarajlijaM, RaketicD, NesicN Heroin addiction in Serbian patients with Tourette syndrome. J Psychiatr Pract 2018;24:424427. doi: 10.1097/PRA.000000000000034130395551
  50. 50McConvilleBJ, NormanAB, FogelsonMH, ErenbergG Sequential use of opioid antagonists and agonists in Tourette’s syndrome. Lancet 1994;343:601. doi: 10.1016/S0140-6736(94)91553-97906352
  51. 51HaberSN, KowallNW, VonsattelJP, BirdED, RichardsonEP,Jr Gilles de la Tourette’s syndrome. A postmortem neuropathological and immunohistochemical study. J Neurol Sci 1986;75:225241. doi: 10.1016/0022-510X(86)90097-32428943
  52. 52LenningtonJB, CoppolaG, Kataoka-SasakiY, FernandezTV, PalejevD, LiY, et al. Transcriptome analysis of the human striatum in Tourette syndrome. Biol Psychiatr 2016;79:372382. doi: 10.1016/j.biopsych.2014.07.018
  53. 53Cormier-DequaireF, BekadarS, AnheimM, LebbahS, PelissoloA, KrackP, et al. Suggestive association between OPRM1 and impulse control -disorders in Parkinson’s disease. Mov Disord 2018. doi: 10.1002/mds.27519
  54. 54ErgaAH, DalenI, UshakovaA, ChungJ, TzoulisC, TysnesOB, et al. Dopaminergic and opioid pathways associated with impulse control disorders in Parkinson’s disease. Front Neurol 2018;9:109. doi: 10.3389/fneur.2018.0010929541058
  55. 55WrightA, RickardsH, CavannaAE Impulse-control disorders in gilles de la tourette syndrome. J Neuropsychiatr Clin Neurosci 2012;24:1627. doi: 10.1176/appi.neuropsych.10010013
  56. 56KivellB, UzelacZ, SundaramurthyS, RajamanickamJ, EwaldA, CheferV, et al. Salvinorin A regulates dopamine transporter function via a kappa opioid receptor and ERK1/2-dependent mechanism. Neuropharmacology 2014;86:228240. doi: 10.1016/j.neuropharm.2014.07.01625107591
  57. 57TejedaHA, ShippenbergTS, HenrikssonR The dynorphin/kappa-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci 2012;69:857896. doi: 10.1007/s00018-011-0844-x22002579
  58. 58MaiaTV, ConceicaoVA The roles of phasic and tonic dopamine in tic learning and expression. Biol Psychiatr 2017;82:401412. doi: 10.1016/j.biopsych.2017.05.025
  59. 59SimoninF, ValverdeO, SmadjaC, SloweS, KitchenI, DierichA, et al. Disruption of the kappa-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective -kappa-agonist U-50,488H and attenuates morphine withdrawal. EMBO J 1998;17:886897. doi: 10.1093/emboj/17.4.8869463367
  60. 60FilliolD, GhozlandS, ChlubaJ, MartinM, MatthesHW, SimoninF, et al. Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet 2000;25:195200. doi: 10.1038/7606110835636
  61. 61OlmsteadMC, OuagazzalAM, KiefferBL Mu and delta opioid receptors oppositely regulate motor impulsivity in the signaled nose poke task. PLoS One 2009;4:e4410. doi: 10.1371/journal.pone.000441019198656
  62. 62LyuS, DeAndradeMP, MuellerS, OkscheA, WaltersAS, LiY Hyperactivity, dopaminergic abnormalities, iron deficiency and anemia in an in vivo opioid receptors knockout mouse: Implications for the restless legs syndrome. Behav Brain Res 2019;374:112123. doi: 10.1016/j.bbr.2019.11212331376441
  63. 63SpampinatoSM Overview of genetic analysis of human opioid receptors. Meth Mol Biol 2015;1230:312. doi: 10.1007/978-1-4939-1708-2_1
  64. 64KivellBM, EwaldAW, PrisinzanoTE Salvinorin A analogs and other kappa-opioid receptor compounds as treatments for cocaine abuse. Adv Pharmacol 2014;69:481511. doi: 10.1016/B978-0-12-420118-7.00012-324484985
  65. 65MirandaDM, WiggK, FengY, SandorP, BarrCL Association study between Gilles de la Tourette syndrome and two genes in the Robo-Slit pathway located in the chromosome 11q24 linked/associated region. Am J Med Genet B Neuropsychiatr Genet 2008;147B:6872. doi: 10.1002/ajmg.b.3058017671968
  66. 66TorigoeM, YamauchiK, TamadaA, MatsudaI, AibaA, CastellaniV, et al. Role of neuropilin-2 in the ipsilateral growth of midbrain dopaminergic axons. Eur J Neurosci 2013;37:15731583. doi: 10.1111/ejn.1219023534961
  67. 67ArakiT, MizutaniH, MatsubaraM, ImaiY, MizugakiM, ItoyamaY Nitric oxide synthase inhibitors cause motor deficits in mice. Eur Neuropsychopharmacol 2001;11:125133. doi: 10.1016/S0924-977X(01)00077-311313158
  68. 68SatoD, LionelAC, LeblondCS, PrasadA, PintoD, WalkerS, et al. SHANK1 deletions in males with autism spectrum disorder. Am J Hum Genet 2012;90:879887. doi: 10.1016/S0924-977X(01)00077-322503632
DOI: https://doi.org/10.5334/tohm.464 | Journal eISSN: 2160-8288
Language: English
Submitted on: Jun 25, 2019
Accepted on: Oct 15, 2019
Published on: Nov 22, 2019
Published by: Columbia University Libraries/Information Services
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Christel Depienne, Sorana Ciura, Oriane Trouillard, Delphine Bouteiller, Elsa Leitão, Caroline Nava, Boris Keren, Yannick Marie, Justine Guegan, Sylvie Forlani, Alexis Brice, Mathieu Anheim, Yves Agid, Paul Krack, Philippe Damier, François Viallet, Jean-Luc Houeto, Franck Durif, Marie Vidailhet, Yulia Worbe, Emmanuel Roze, Edor Kabashi, Andreas Hartmann, published by Columbia University Libraries/Information Services
This work is licensed under the Creative Commons Attribution 4.0 License.