References
- 1HermannAWalkerRJDiagnosis and treatment of choreaCurr Neurol Neurosci Rep201515514doi: http://dx.doi.org/10.1007/s11910-014-0514-025620691
- 2HayflickSJWestawaySKLevinsonBet alGenetic, clinical, and radiographic delineation of Hallervorden-Spatz syndromeNew Engl J Med2003348334012510040
- 3CluitmansJCATomelleriCYapiciZet alAbnormal red cell structure and function in neuroacanthocytosisPLoS One201510e0125580doi: http://dx.doi.org/10.1371/journal.pone.012558025933379
- 4StorchAKornhassMSchwarzJTesting for acanthocytosis. A prospective reader-blinded study in movement disorder patientsJ Neurol20052528490doi: http://dx.doi.org/10.1007/s00415-005-0616-315654559
- 5ReinhartWHLubszkySThönySSchulzkiTInteraction of injectable neurotropic drugs with the red cell membraneToxicol In Vitro20142812741279doi: http://dx.doi.org/10.1016/j.tiv.2014.06.00824997296
- 6AnXMohandasNDisorders of red cell membraneBr J Haematol2008141367375doi: http://dx.doi.org/10.1111/j.1365-2141.2008.07091.x18341630
- 7Da CostaLGalimandJFenneteauOMohandasNHereditary spherocytosis, elliptocytosis, and other red cell membrane disordersBlood Rev201327167178doi: http://dx.doi.org/10.1016/j.blre.2013.04.00323664421
- 8FerruEGigerKPantaleoAet alRegulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3Blood201111759986006doi: http://dx.doi.org/10.1182/blood-2010-11-31702421474668
- 9CunhaSRMohlerPJAnkyrin protein networks in membrane formation and stabilizationJ Cell Mol Med20091343644376doi: http://dx.doi.org/10.1111/j.1582-4934.2009.00943.x19840192
- 10GilliganDMLozovatskyLGwynnBBrugnaraCMohandasNPetersLLTargeted disruption of the beta adducin gene (Add2) causes red blood cell spherocytosis in miceProc Natl Acad Sci U S A199996107171072210485892
- 11GhavamiSShojaeiSYeganehBet alAutophagy and apoptosis dysfunction in neurodegenerative disordersProg Neurobiol20141122449doi: http://dx.doi.org/10.1016/j.pneurobio.2013.10.00424211851
- 12HalsteadJRJalinkKDivechaNAn emerging role for PtdIns(4,5)P2-mediated signalling in human diseaseTrends Pharmacol Sci200526654660doi: http://dx.doi.org/10.1016/j.tips.2005.10.00416253350
- 13HooverKBBryantPJThe genetics of the protein 4.1 family: organizers of the membrane and cytoskeletonCurr Opin Cell Biol200012229234doi: http://dx.doi.org/10.1016/S0955-0674(99)00080-010712924
- 14JacksonMSongWLiuMyet alModulation of the neuronal glutamate transporter EAAT4 by two interacting proteinsNature20014108993doi: http://dx.doi.org/10.1038/3506509111242047
- 15MachnickaBCzogallaAHryniewicz-JankowskaAet alSpectrins: a structural platform for stabilization and activation of membrane channels, receptors and transportersBiochim Biophys Acta20141838620634doi: http://dx.doi.org/10.1016/j.bbamem.2013.05.00223673272
- 16LevyEInsights from human congenital disorders of intestinal lipid metabolismJ Lipid Res201556945962doi: http://dx.doi.org/10.1194/jlr.R05241525387865
- 17ClarkMRAminoffMJChiuDTKuypersFAFriendDSRed cell deformability and lipid composition in two forms of acanthocytosis: enrichment of acanthocytic populations by density gradient centrifugationJ Lab Clin Med19891134694812703759
- 18SakaiTAntokuYIwashitaHGotoINagamatsuKShiiHChorea-acanthocytosis: abnormal composition of covalently bound fatty acids of erythrocyte membrane proteinsAnn Neurol199129664669doi: http://dx.doi.org/10.1002/ana.4102906151832532
- 19BosmanGJCGMBartholomeusIGPDe GripWJHorstinkMWIMErythrocyte anion transporter and antibrain immunoreactivity in chorea-acanthocytosis. a contribution to etiology, genetics, and diagnosisBrain Res Bull199433523528doi: http://dx.doi.org/10.1016/0361-9230(94)90078-78186997
- 20ParkJSNeimanAMVPS13 regulates membrane morphogenesis during sporulation in Saccharomyces cerevisiaeJ Cell Sci201212530043011doi: http://dx.doi.org/10.1242/jcs.10511422442115
- 21ParkJSHalegouaSKishidaSNeimanAMA conserved function in phosphatidylinositol metabolism for mammalian vps13 family proteinsPLoS One201510e0124836doi: http://dx.doi.org/10.1371/journal.pone.012483625915401
- 22JanssenCIKiliaanAJLong-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegenerationProg Lipid Res201453117doi: http://dx.doi.org/10.1016/j.plipres.2013.10.00224334113
- 23HartmannTvan WijkNWurtmanRJet alA nutritional approach to ameliorate altered phospholipid metabolism in Alzheimer’s diseaseJ Alzheimers Dis201441715717doi: http://dx.doi.org/10.3233/JAD-14113724898653
- 24BosmanGJCGMHorstinkMWIMDe GripWJErythrocyte membrane abnormalities in neuroacanthocytosis: evidence for a neuron-erythrocyte axis?DanekANeuroacanthocytosis SyndromesSpringer2004153
- 25BosmanGJCGMde FranceschiLNeuroacanthocytosis-related changes in erythrocyte membrane organization and functionWalkerRHSaikiSDanekANeuroacanthocytosis Syndromes IISpringer2008133142
- 26KayMMBosmanGJLawrenceCFunctional topography of band 3: specific structural alteration linked to functional aberrations in human erythrocytesProc Natl Acad Sci U S A1988854924962829189
- 27De FranceschiLTomelleriCMatteAet alErythrocyte membrane changes of chorea-acanthocytosis are the result of altered Lyn kinase activityBlood201111856525663doi: http://dx.doi.org/10.1182/blood-2011-05-35533921951684
- 28FollerMHermannAGuSet alChorein-sensitive polymerization of cortical actin and suicidal cell death in chorea-acanthocytosisFASEB J20122615261534doi: http://dx.doi.org/10.1096/fj.11-19831722227296
- 29ShiokawaNNakamuraMSameshimaMet alChorein, the protein responsible for chorea-acanthocytosis, interacts with β-adducin and β-actinBiochem Biophys Res Commun201344196101doi: http://dx.doi.org/10.1016/j.bbrc.2013.10.01124129186
- 30FerruEPantaleoACartaFet alThalassemic erythrocytes release microparticles loaded with hemichromes by redox activation of p72Syk kinaseHaematologica201499570578doi: http://dx.doi.org/10.3324/haematol.2013.08453324038029
- 31ProhaskaRSibonOCMRudnickiDDet alBrain, blood and iron: perspectives on the roles of erythrocytes and iron in neurodegenerationNeurobiol Dis201246607624doi: http://dx.doi.org/10.1016/j.nbd.2012.03.00622426390
- 32ChuCTPloweyEDDagdaRKHickeyRWCherraSJ
3rd ClarkRSAutophagy in neurite injury and neurodegeneration: in vitro and in vivo modelsMethods Enzymol2009453217249doi: http://dx.doi.org/10.1016/S0076-6879(08)04011-119216909 - 33MortensenMFergusonDJEdelmannMet alLoss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivoProc Natl Acad Sci U S A2010107832827doi: http://dx.doi.org/10.1073/pnas.091317010720080761
- 34PetiotOOgier-DenisEBlommaartEFMeijerAJCodognoPDistinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cellsJ Biol Chem200027599299810625637
- 35KlionskyDJAutophagy: from phenomenology to molecular understanding in less than a decadeNat Rev Mol Cell Biol20078931937doi: http://dx.doi.org/10.1038/nrm224517712358
- 36FrancelleLGalvanLBrouilletEPossible involvement of self-defense mechanisms in the preferential vulnerability of the striatum in Huntington’s diseaseFront Cell Neurosci20148295doi: http://dx.doi.org/10.3389/fncel.2014.0029525309327
- 37KreinerGCompensatory mechanisms in genetic models of neurodegeneration: are the mice better than humans?Front Cell Neurosci2015956doi: http://dx.doi.org/10.3389/fncel.2015.0005625798086
- 38LiuWMHuangPKarNet alLyn facilitates glioblastoma cell survival under conditions of nutrient deprivation by promoting autophagyPLoS One20138e70804doi: http://10.1371/journal.pone.007080423936469
- 39HammondGRFischerMJAndersonKEet alPI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identityScience2012337727730doi: http://10.1126/science.122248322722250
- 40RampoldiLDanekAMonacoAPClinical features and molecular bases of neuroacanthocytosisJ Mol Med (Berl)200280475491doi: http://dx.doi.org/10.1007/s00109-002-0349-z12185448
- 41PayabvashSSouzaLCWangYet alRegional ischemic vulnerability of the brain to hypoperfusion: the need for location specific computed tomography perfusion thresholds in acute stroke patientsStroke20114212551260doi: http://dx.doi.org/10.1161/STROKEAHA.110.60094021493917
- 42SalterMWPitcherGMDysregulated Src upregulation of NMDA receptor activity: a common link in chronic pain and schizophreniaFEBS J2012279211doi: http://dx.doi.org/10.1111/j.1742-4658.2011.08390.x21985289
- 43MitchellIJGriffithsMRThe differential susceptibility of specific neuronal populations: insights from Huntington’s diseaseIUBMB Life200355293298doi: http://dx.doi.org/10.1080/152165403100015301212938730
- 44CanalsJMPinedaJRTorres-PerazaJFet alBrain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s diseaseJ Neurosci20042477277739doi: http://dx.doi.org/10.1523/JNEUROSCI.1197-04.200415342740
- 45Deus-SilvaLBonilhaLDamascenoBPet alBrain perfusion impairment in neurologically asymptomatic adult patients with sickle-cell disease shown by voxel-based analysis of SPECT imagesFront Neurol20134207doi: http://dx.doi.org/10.3389/fneur.2013.0020724391625
- 46MackinRSInselPTruranDet alNeuroimaging abnormalities in adults with sickle cell anemia: associations with cognitionNeurol201482835841doi: http://dx.doi.org/10.1212/WNL.0000000000000188
- 47LongXXiongNZhuQet alFunctional neuroimaging might enable the early diagnosis of neuroacanthocytosisCan J Neurol Sci20144140240424718830
- 48BrücknerKBlood cells need glia, too: a new role for the nervous system in the bone marrow nicheCell Stem Cell20119493495doi: http://dx.doi.org/10.1016/j.stem.2011.11.01622136920
- 49MorrisonSJScaddenDTThe bone marrow niche for haematopoietic stem cellsNature2014505327334doi: http://dx.doi.org/10.1038/nature1298424429631
