Have a personal or library account? Click to login
Thalamic and Visual Network Dysfunction Relates to Tremor Response in Thalamic Deep Brain Stimulation Cover

Thalamic and Visual Network Dysfunction Relates to Tremor Response in Thalamic Deep Brain Stimulation

Open Access
|Aug 2025

References

  1. 1Bhatia KP, Bain P, Bajaj N, et al. Consensus Statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord. 2018;33:7587. DOI: 10.1002/mds.27121
  2. 2He S, West TO, Plazas FR, et al. Cortico-thalamic tremor circuits and their associations with deep brain stimulation effects in essential tremor. Brain. 2025;148:20932107. DOI: 10.1093/brain/awae387
  3. 3Hershey T, Mink JW. Using functional neuroimaging to study the brain’s response to deep brain stimulation. Neurology. 2006;66:11421143. DOI: 10.1212/01.wnl.0000216425.34178.dd
  4. 4Fang W, Chen H, Wang H, et al. Essential tremor is associated with disruption of functional connectivity in the ventral intermediate Nucleus—Motor Cortex—Cerebellum circuit. Hum Brain Mapp. 2016;37:16578. DOI: 10.1002/hbm.23024
  5. 5Gallea C, Popa T, Garcia-Lorenzo D, et al. Intrinsic signature of essential tremor in the cerebello-frontal network. Brain. 2015;138:29202933. DOI: 10.1093/brain/awv171
  6. 6Jenkins IH, Bain PG, Colebatch JG, Thompson PD, Findley LJ, Frackowiak RS, Marsden CD, Brooks DJ. A positron emission tomography study of essential tremor: evidence for overactivity of cerebellar connections. Ann Neurol. 1993;34:8290. DOI: 10.1002/ana.410340115
  7. 7Nicoletti V, Cecchi P, Pesaresi I, Frosini D, Cosottini M, Ceravolo R. Cerebello-thalamo-cortical network is intrinsically altered in essential tremor: evidence from a resting state functional MRI study. Sci Rep. 2020;10:16661. DOI: 10.1038/s41598-020-73714-9
  8. 8Lee D, Gan S-R, Faust PL, Louis ED, Kuo S-H. Climbing fiber-Purkinje cell synaptic pathology across essential tremor subtypes. Parkinsonism Relat Disord. 2018;51:2429. DOI: 10.1016/j.parkreldis.2018.02.032
  9. 9Choe M, Cortés E, Vonsattel J-PG, Kuo S-H, Faust PL, Louis ED. Purkinje cell loss in essential tremor: Random sampling quantification and nearest neighbor analysis. Mov Disord. 2016. DOI: 10.1002/mds.26490
  10. 10Louis E, Vonsattel J, Honig L, Ross G, Lyons K, Pahwa R. Neuropathologic findings in essential tremor. Neurology. 2006;66:17561759. DOI: 10.1212/01.wnl.0000218162.80315.b9
  11. 11Archer DB, Coombes SA, Chu WT, Chung JW, Burciu RG, Okun MS, Wagle Shukla A, Vaillancourt DE. A widespread visually-sensitive functional network relates to symptoms in essential tremor. Brain. 2018;141:472485. DOI: 10.1093/brain/awx338
  12. 12Tuleasca C, Najdenovska E, Regis J, et al. Pretherapeutic Motor Thalamus Resting-State Functional Connectivity with Visual Areas Predicts Tremor Arrest After Thalamotomy for Essential Tremor: Tracing the Cerebello-thalamo-visuo-motor Network. World Neurosurg. 2018;117:e438449. DOI: 10.1016/j.wneu.2018.06.049
  13. 13Wang P, Luo X, Zhong C, Yang L, Guo F, Yu N. Resting state fMRI reveals the altered synchronization of BOLD signals in essential tremor. J Neurol Sci. 2018;392:6976. DOI: 10.1016/j.jns.2018.07.008
  14. 14Perlmutter JS, Mink JW. Deep brain stimulation. Annu Rev Neurosci. 2006;29:22957. DOI: 10.1146/annurev.neuro.29.051605.112824
  15. 15Perlmutter JS, Mink JW, Bastian AJ, Zackowski K, Hershey T, Miyawaki E, Koller W, Videen TO. Blood flow responses to deep brain stimulation of thalamus. Neurology. 2002;58:13881394. DOI: 10.1212/WNL.58.9.1388
  16. 16Grimm F, Walcker M, Milosevic L, Naros G, Bender B, Weiss D, Gharabaghi A. Strong connectivity to the sensorimotor cortex predicts clinical effectiveness of thalamic deep brain stimulation in essential tremor. Neuroimage Clin. 2024. 10.1016/J.NICL.2024.103709
  17. 17Middlebrooks EH, Okromelidze L, Wong JK, et al. Connectivity correlates to predict essential tremor deep brain stimulation outcome: Evidence for a common treatment pathway. Neuroimage Clin. 2021;32:102846. DOI: 10.1016/j.nicl.2021.102846
  18. 18Tuleasca C, Najdenovska E, Régis J, et al. Clinical response to Vim’s thalamic stereotactic radiosurgery for essential tremor is associated with distinctive functional connectivity patterns. Acta Neurochir (Wien). 2018;160:611624. DOI: 10.1007/s00701-017-3456-x
  19. 19Tuleasca C, Bolton T, Régis J, Najdenovska E, Witjas T, Girard N, Thiran J-P, Levivier M, Van De Ville D. Thalamotomy for tremor normalizes aberrant pre-therapeutic visual cortex functional connectivity. Brain. 2019;142:e57. DOI: 10.1093/brain/awz299
  20. 20Tuleasca C, Bolton TAW, Régis J, et al. Normalization of aberrant pretherapeutic dynamic functional connectivity of extrastriate visual system in patients who underwent thalamotomy with stereotactic radiosurgery for essential tremor: a resting-state functional MRI study. J Neurosurg. 2019;132:17921801. DOI: 10.3171/2019.2.JNS183454
  21. 21Al-Fatly B, Ewert S, Kübler D, Kroneberg D, Horn A, Kühn AA. Connectivity profile of thalamic deep brain stimulation to effectively treat essential tremor. Brain. 2019;142:30863098. DOI: 10.1093/brain/awz236
  22. 22Power JD, Schlaggar BL, Petersen SE. Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage. 2014;105:536551. DOI: 10.1016/j.neuroimage.2014.10.044
  23. 23La Rosa PS, Brooks TL, Deych E, Shands B, Prior F, Larson-Prior LJ, Shannon WD. Gibbs distribution for statistical analysis of graphical data with a sample application to fcMRI brain images. Stat Med. 2016;35:566580. DOI: 10.1002/sim.6757
  24. 24Power JD, Cohen AL, Nelson SSM, et al. Functional network organization of the human brain. Neuron. 2011;72:665678. DOI: 10.1016/j.neuron.2011.09.006
  25. 25Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:70011. DOI: 10.1038/nrn2201
  26. 26Norris SA, Morris AE, Campbell MC, Karimi M, Adeyemo B, Paniello RC, Snyder AZ, Petersen SE, Mink JW, Perlmutter JS. Regional, not global, functional connectivity contributes to isolated focal dystonia. Neurology. 2020;95:e2246e2258. DOI: 10.1212/WNL.0000000000010791
  27. 27Gratton C, Koller JM, Shannon W, Greene DJ, Maiti B, Snyder AZ, Petersen SE, Perlmutter JS, Campbell MC. Emergent Functional Network Effects in Parkinson Disease. Cerebral Cortex. 2018;bhy121. DOI: 10.1093/cercor/bhy121
  28. 28Fahn S, Tolosa E, Marin C. Clinical rating scale for tremor. In: Jankovic J, Tolosa E, editors. Parkinson’s disease and movement disorders. Baltimore: Williams and Wilkins; 1993. pp. 271280.
  29. 29Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL. Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage. 2000;11:73559. DOI: 10.1006/nimg.2000.0568
  30. 30Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R. Movement-related effects in fMRI time-series. Magn Reson Med. 1996;35:34655. DOI: 10.1002/mrm.1910350312
  31. 31Buckner RL, Head D, Parker J, Fotenos AF, Marcus D, Morris JC, Snyder AZ. A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage. 2004;23:72438. DOI: 10.1016/j.neuroimage.2004.06.018
  32. 32Fischl B. FreeSurfer. Neuroimage. 2012;62:77481. DOI: 10.1016/j.neuroimage.2012.01.021
  33. 33Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:214254. DOI: 10.1016/j.neuroimage.2011.10.018
  34. 34Gratton C, Dworetsky A, Coalson RS, et al. Removal of high frequency contamination from motion estimates in single-band fMRI saves data without biasing functional connectivity. Neuroimage. 2020;217:116866. DOI: 10.1016/j.neuroimage.2020.116866
  35. 35Gratton C, Dworetsky A, Coalson RS, et al. Removal of high frequency contamination from motion estimates in single-band fMRI saves data without biasing functional connectivity. Neuroimage. 2020;217:116866. DOI: 10.1016/j.neuroimage.2020.116866
  36. 36Seitzman BA, Gratton C, Marek S, Raut RV, Dosenbach NUF, Schlaggar BL, Petersen SE, Greene DJ. A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum. Neuroimage. 2020;206:116290. DOI: 10.1016/j.neuroimage.2019.116290
  37. 37Bellman RE. Adaptive Control Processes: A Guided Tour; 1961. DOI: 10.1002/zamm.19620420718
  38. 38Fort G, Lambert-Lacroix S. Classification using partial least squares with penalized logistic regression. Bioinformatics. 2005;21:11041111. DOI: 10.1093/bioinformatics/bti114
  39. 39Snyder AZ, Nishino T, Shimony JS, et al. Covariance and Correlation Analysis of Resting State Functional Magnetic Resonance Imaging Data Acquired in a Clinical Trial of Mindfulness-Based Stress Reduction and Exercise in Older Individuals. Front Neurosci. 2022. 10.3389/fnins.2022.825547
  40. 40Brier MR, Thomas JB, Snyder AZ, Benzinger TL, Zhang D, Raichle ME, Holtzman DM, Morris JC, Ances BM. Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression. J Neurosci. 2012;32:88909. DOI: 10.1523/JNEUROSCI.5698-11.2012
  41. 41Glickman ME, Rao SR, Schultz MR. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J Clin Epidemiol. 2014;67:8507. DOI: 10.1016/j.jclinepi.2014.03.012
  42. 42McDonald JH. Handbook of Biological Statistics, 3rd ed. Sparky House Publishing; 2014.
  43. 43Lenka A, Bhalsing KS, Panda R, Jhunjhunwala K, Naduthota RM, Saini J, Bharath RD, Yadav R, Pal PK. Role of altered cerebello-thalamo-cortical network in the neurobiology of essential tremor. Neuroradiology. 2017;59:157168. DOI: 10.1007/s00234-016-1771-1
  44. 44Nicoletti V, Cecchi P, Pesaresi I, Frosini D, Cosottini M, Ceravolo R. Cerebello-thalamo-cortical network is intrinsically altered in essential tremor: evidence from a resting state functional MRI study. Sci Rep. 2020;10:16661. DOI: 10.1038/s41598-020-73714-9
  45. 45Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences. 2016;113:79007905. DOI: 10.1073/pnas.1602413113
  46. 46Gotts SJ, Gilmore AW, Martin A. Brain networks, dimensionality, and global signal averaging in resting-state fMRI: Hierarchical network structure results in low-dimensional spatiotemporal dynamics. Neuroimage. 2020;205:116289. DOI: 10.1016/j.neuroimage.2019.116289
  47. 47Lan H, Suo X, Li W, et al. Abnormalities of intrinsic brain activity in essential tremor: A meta-analysis of resting-state functional imaging. Hum Brain Mapp. 2021;42:31563167. DOI: 10.1002/hbm.25425
  48. 48Wang P, Luo X, Zhong C, Yang L, Guo F, Yu N. Resting state fMRI reveals the altered synchronization of BOLD signals in essential tremor. J Neurol Sci. 2018;392:6976. DOI: 10.1016/j.jns.2018.07.008
  49. 49Mueller K, Jech R, Hoskovcová M, Ulmanová O, Urgošík D, Vymazal J, Růžička E. General and selective brain connectivity alterations in essential tremor: A resting state fMRI study. Neuroimage Clin. 2017;16:468476. DOI: 10.1016/j.nicl.2017.06.004
  50. 50Younger E, Ellis EG, Parsons N, Pantano P, Tommasin S, Caeyenberghs K, Benito-León J, Romero JP, Joutsa J, Corp DT. Mapping Essential Tremor to a Common Brain Network Using Functional Connectivity Analysis. Neurology. 2023;101:e1483. DOI: 10.1212/WNL.0000000000207701
  51. 51Gallea C, Popa T, Garcia-Lorenzo D, et al. Intrinsic signature of essential tremor in the cerebello-frontal network. Brain. 2015;138:29202933. DOI: 10.1093/brain/awv171
  52. 52DeSimone JC, Archer DB, Vaillancourt DE, Wagle Shukla A. Network-level connectivity is a critical feature distinguishing dystonic tremor and essential tremor. Brain. 2019;awz085. DOI: 10.1093/brain/awz085
  53. 53Li J-Y, Suo X-L, Li N-N, et al. Altered spontaneous brain activity in essential tremor with and without resting tremor: a resting-state fMRI study. MAGMA. 2021;34:201212. DOI: 10.1007/s10334-020-00865-1
  54. 54Sharifi S, Buijink AWG, Luft F, Scheijbeler EP, Potters WV, van Wingen G, Heida T, Bour LJ, van Rootselaar AF. Differences in Olivo-Cerebellar Circuit and Cerebellar Network Connectivity in Essential Tremor: a Resting State fMRI Study. Cerebellum. 2023;22:11231136. DOI: 10.1007/s12311-022-01486-1
  55. 55Buijink AWG, van der Stouwe AMM, Broersma M, Sharifi S, Groot PFC, Speelman JD, Maurits NM, van Rootselaar A-F. Motor network disruption in essential tremor: a functional and effective connectivity study. Brain. 2015;138:293447. DOI: 10.1093/brain/awv225
  56. 56Mavroudis I, Petridis F, Kazis D. Neuroimaging and neuropathological findings in essential tremor. Acta Neurol Scand. 2019;139:491496. DOI: 10.1111/ane.13101
  57. 57Cerasa A, Quattrone A. Linking Essential Tremor to the Cerebellum-Neuroimaging Evidence. Cerebellum. 2016;15:263275. DOI: 10.1007/s12311-015-0739-8
  58. 58Fang W, Chen H, Wang H, et al. Essential tremor is associated with disruption of functional connectivity in the ventral intermediate Nucleus—Motor Cortex—Cerebellum circuit. Hum Brain Mapp. 2016;37:16578. DOI: 10.1002/hbm.23024
  59. 59Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:40342. DOI: 10.1146/annurev.ne.15.030192.002155
  60. 60Bosch TJ, Groth C, Espinoza AI, Bharmauria V, Flouty O, Singh A. Cerebellar Oscillatory Patterns in Essential Tremor: Modulatory Effects of VIM-DBS. The Cerebellum. 2025;24:110. DOI: 10.1007/s12311-025-01787-1
  61. 61Lee A, Furuya S, Altenmüller E. Epidemiology and treatment of 23 musicians with task specific tremor. J Clin Mov Disord. 2014;1:5. DOI: 10.1186/2054-7072-1-5
  62. 62Cameron E, Dyke JP, Hernandez N, Louis ED, Dydak U. Cerebral gray matter volume losses in essential tremor: A case-control study using high resolution tissue probability maps. Parkinsonism Relat Disord. 2018;51:8590. DOI: 10.1016/j.parkreldis.2018.03.008
  63. 63Rajput A, Robinson CA, Rajput AH. Essential tremor course and disability: A clinicopathologic study of 20 cases. Neurology. 2004;62:932936. DOI: 10.1212/01.WNL.0000115145.18830.1A
  64. 64Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF. Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences. 2006;103:1384813853. DOI: 10.1073/pnas.0601417103
  65. 65Benito-León J, Sanz-Morales E, Melero H, Louis ED, Romero JP, Rocon E, Malpica N. Graph theory analysis of resting-state functional magnetic resonance imaging in essential tremor. Hum Brain Mapp. 2019;40:46864702. DOI: 10.1002/hbm.24730
  66. 66Archer DB, Coombes SA, Chu WT, Chung JW, Burciu RG, Okun MS, Wagle Shukla A, Vaillancourt DE. A widespread visually-sensitive functional network relates to symptoms in essential tremor. Brain. 2018;141:472485. DOI: 10.1093/brain/awx338
  67. 67Feys P, Helsen WF, Liu X, Lavrysen A, Loontjens V, Nuttin B, Ketelaer P. Effect of visual information on step-tracking movements in patients with intention tremor due to multiple sclerosis. Mult Scler. 2003;9:492502. DOI: 10.1191/1352458503ms949oa
  68. 68Tröster AI, Woods SP, Fields JA, Lyons KE, Pahwa R, Higginson CI, Koller WC. Neuropsychological deficits in essential tremor: an expression of cerebello-thalamo-cortical pathophysiology? Eur J Neurol. 2002;9:14351. DOI: 10.1046/j.1468-1331.2002.00341.x
  69. 69Larson-Prior LJ, Zempel JM, Nolan TS, Prior FW, Snyder AZ, Raichle ME. Cortical network functional connectivity in the descent to sleep. Proc Natl Acad Sci U S A. 2009;106:448994. DOI: 10.1073/pnas.0900924106
  70. 70Bijsterbosch J, Harrison S, Duff E, Alfaro-Almagro F, Woolrich M, Smith S. Investigations into within- and between-subject resting-state amplitude variations. Neuroimage. 2017;159:5769. DOI: 10.1016/j.neuroimage.2017.07.014
  71. 71Song C, Boly M, Tagliazucchi E, Laufs H, Tononi G. fMRI spectral signatures of sleep. Proc Natl Acad Sci U S A. 2022. DOI: 10.1073/PNAS.2016732119
  72. 72Boly M, Perlbarg V, Marrelec G, Schabus M, Laureys S, Doyon J, Pélégrini-Issac M, Maquet P, Benali H. Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc Natl Acad Sci U S A. 2012;109:58565861. DOI: 10.1073/pnas.1111133109
  73. 73Tagliazucchi E, Laufs H. Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron. 2014;82:695708. DOI: 10.1016/j.neuron.2014.03.020
  74. 74Mitra A, Snyder AZ, Tagliazucchi E, Laufs H, Raichle ME. Propagated infra-slow intrinsic brain activity reorganizes across wake and slow wave sleep. Elife. 2015;4:e10781. DOI: 10.7554/eLife.10781
  75. 75Tsai PJ, Chen SCJ, Hsu CY, Wu CW, Wu YC, Hung CS, Yang AC, Liu PY, Biswal B, Lin CP. Local awakening: regional reorganizations of brain oscillations after sleep. Neuroimage. 2014;102 Pt 2:894903. DOI: 10.1016/j.neuroimage.2014.07.032
  76. 76Laumann TO, Gordon EM, Adeyemo B, et al. Functional System and Areal Organization of a Highly Sampled Individual Human Brain. Neuron. 2015;87:65770. DOI: 10.1016/j.neuron.2015.06.037
  77. 77Gerbin M, Viner AS, Louis ED. Sleep in essential tremor: a comparison with normal controls and Parkinson’s disease patients. Parkinsonism Relat Disord. 2012;18: 27984. DOI: 10.1016/j.parkreldis.2011.11.004
  78. 78Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Sleep disorders in essential tremor: systematic review and meta-analysis. Sleep. 2020. 10.1093/sleep/zsaa039
  79. 79Laumann TO, Snyder AZ, Mitra A, et al. On the Stability of BOLD fMRI Correlations. Cereb Cortex. 2017;27:47194732. DOI: 10.1093/cercor/bhw265
  80. 80Larson-Prior LJ, Zempel JM, Nolan TS, Prior FW, Snyder AZ, Raichle ME. Cortical network functional connectivity in the descent to sleep. Proc Natl Acad Sci U S A. 2009;106:448994. DOI: 10.1073/pnas.0900924106
  81. 81Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME. Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 2007;447:836. DOI: 10.1038/nature05758
DOI: https://doi.org/10.5334/tohm.1039 | Journal eISSN: 2160-8288
Language: English
Submitted on: May 1, 2025
Accepted on: Jun 16, 2025
Published on: Aug 1, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Aimee E. Morris, Babatunde Adeyemo, Meghan C. Campbell, Abraham Z. Snyder, Joel S. Perlmutter, Jonathan W. Mink, Scott A. Norris, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.