References
- 1Ames, C. (1989). The Markov process as a compositional model: A survey and tutorial. Leonardo, pages 175–187. DOI: 10.2307/1575226
- 2Brunner, G., Konrad, A., Wang, Y., and Wattenhofer, R. (2018). MIDI-VAE: Modeling dynamics and instrumentation of music with applications to style transfer. arXiv preprint arXiv:1809.07600.
- 3Cancino-Chacon, C. E., Grachten, M., Goebl, W., and Widmer, G. (2018). Computational models of expressive music performance: A comprehensive and critical review. Frontiers in Digital Humanities, 5: 25. DOI: 10.3389/fdigh.2018.00025
- 4Danielsen, A., Nymoen, K., Anderson, E., Camara, G. S., Langerod, M. T., Thompson, M. R., and London, J. (2019). Where is the beat in that note? Effects of attack, duration, and frequency on the perceived timing of musical and quasi-musical sounds. Journal of Experimental Psychology: Human Perception and Performance, 45(3): 402. DOI: 10.1037/xhp0000611
- 5Dixon, S., Goebl, W., and Cambouropoulos, E. (2006). Perceptual smoothness of tempo in expressively performed music. Music Perception, 23(3): 195–214. DOI: 10.1525/mp.2006.23.3.195
- 6Eck, D., and Schmidhuber, J. (2002). Finding temporal structure in music: Blues improvisation with LSTM recurrent networks. In Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, pages 747–756. DOI: 10.1109/NNSP.2002.1030094
- 7Fisher, M. (2012). Burial: Unedited transcript. The Wire.
- 8Frane, A. V. (2017). Swing rhythm in classic drum breaks from hip-hop’s breakbeat canon. Music Perception: An Interdisciplinary Journal, 34(3): 291–302. DOI: 10.1525/mp.2017.34.3.291
- 9Gillick, J., Roberts, A., Engel, J., Eck, D., and Bamman, D. (2019). Learning to groove with inverse sequence transformations. In International Conference on Machine Learning, pages 2269–2279.
- 10Gillick, J., Tang, K., and Keller, R. M. (2010). Machine learning of jazz grammars. Computer Music Journal, 34(3): 56–66. DOI: 10.1162/COMJ_a_00006
- 11Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C.-Z. A., Dieleman, S., Elsen, E., Engel, J., and Eck, D. (2018). Enabling factorized piano music modeling and generation with the Maestro dataset. arXiv preprint arXiv:1810.12247.
- 12Huang, C.-Z. A., Koops, H. V., Newton-Rex, E., Dinculescu, M., and Cai, C. J. (2020). AI Song Contest: Human-AI co-creation in songwriting. arXiv preprint arXiv:2010.05388.
- 13Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Simon, I., Hawthorne, C., Shazeer, N., Dai, A. M., Hoffman, M. D., Dinculescu, M., and Eck, D. (2018). Music transformer. arXiv preprint arXiv:1809.04281.
- 14Huang, Y.-S., and Yang, Y.-H. (2020). Pop music transformer: Beat-based modeling and generation of expressive pop piano compositions. In Proceedings of the 28th ACM International Conference on Multimedia, MM ’20, page 1180–1188, New York, NY, USA.
Association for Computing Machinery . DOI: 10.1145/3394171.3413671 - 15Jeong, D., Kwon, T., Kim, Y., and Nam, J. (2019). Graph neural network for music score data and modeling expressive piano performance. In International Conference on Machine Learning, pages 3060–3070.
PMLR . - 16Kumar, P., Sanju, H. K., and Nikhil, J. (2016). Temporal resolution and active auditory discrimination skill in vocal musicians. International Archives of Otorhinolaryngology, 20(4): 310–314. DOI: 10.1055/s-0035-1570312
- 17Lee, M. K., Kusbit, D., Metsky, E., and Dabbish, L. (2015). Working with machines: The impact of algorithmic and data-driven management on human workers. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 1603–1612. DOI: 10.1145/2702123.2702548
- 18Lerdahl, F., and Jackendoff, R. S. (1996). A Generative Theory of Tonal Music: Reissue, with a New Preface. MIT Press. DOI: 10.7551/mitpress/12513.001.0001
- 19Mozer, M. C. (1994). Neural network music composition by prediction: Exploring the benefits of psychoacoustic constraints and multi-scale processing. Connection Science, 6(2–3): 247–280. DOI: 10.1080/09540099408915726
- 20Muchnik, C., Hildesheimer, M., Rubinstein, M., Sadeh, M., Shegter, Y., and Shibolet, B. (1985). Minimal time interval in auditory temporal resolution. The Journal of Auditory Research, 25(4): 239–246.
- 21Oore, S., Simon, I., Dieleman, S., Eck, D., and Simonyan, K. (2018). This time with feeling: Learning expressive musical performance. Neural Computing and Applications, pages 1–13. DOI: 10.1007/s00521-018-3758-9
- 22Pati, A., Lerch, A., and Hadjeres, G. (2019). Learning to traverse latent spaces for musical score inpainting. arXiv preprint arXiv:1907.01164.
- 23Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
- 24Roberts, A., Engel, J., Mann, Y., Gillick, J., Kayacik, C., Norly, S., Dinculescu, M., Radebaugh, C., Hawthorne, C., and Eck, D. (2019). Magenta Studio: Augmenting creativity with deep learning in Ableton Live. In Proceedings of the International Workshop on Musical Metacreation (MUME).
- 25Roberts, A., Engel, J., Raffel, C., Hawthorne, C., and Eck, D. (2018). A hierarchical latent vector model for learning long-term structure in music. arXiv preprint arXiv:1803.05428.
- 26Shi, Z., Cancino-Chacon, C., and Widmer, G. (2019). User curated shaping of expressive performances. arXiv preprint arXiv:1906.06428.
- 27Sturm, B. L., Ben-Tal, O., Monaghan, U., Collins, N., Herremans, D., Chew, E., Hadjeres, G., Deruty, E., and Pachet, F. (2018). Machine learning research that matters for music creation: A case study. Journal of New Music Research, 48(1): 36–55. DOI: 10.1080/09298215.2018.1515233
- 28Sturm, B. L., Santos, J. F., Ben-Tal, O., and Korshunova, I. (2016). Music transcription modelling and composition using deep learning. arXiv preprint arXiv:1604.08723.
- 29Tokui, N. (2020). Towards democratizing music production with AI-design of variational autoencoderbased rhythm generator as a DAW plugin. arXiv preprint arXiv:2004.01525.
- 30Vigliensoni, G., McCallum, L., and Fiebrink, R. (2020). Creating latent spaces for modern music genre rhythms using minimal training data. Proceedings of the 11th International Conference on Computational Creativity.
- 31Yang, L.-C., Chou, S.-Y., and Yang, Y.-H. (2017). MidiNet: A convolutional generative adversarial network for symbolic-domain music generation. arXiv preprint arXiv:1703.10847.
