Have a personal or library account? Click to login
I Keep Counting: An Experiment in Human/AI Co-creative Songwriting Cover

I Keep Counting: An Experiment in Human/AI Co-creative Songwriting

Open Access
|Dec 2021

References

  1. 1Abreu, J., Caetano, M., and Penha, R. (2016). Computer-aided musical orchestration using an artificial immune system. In International Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design (EvoMUSART 2016), pages 116. DOI: 10.1007/978-3-319-31008-4_1
  2. 2Agres, K., Forth, J., and Wiggins, G. A. (2016). Evaluation of musical creativity and musical metacreation systems. Computers in Entertainment, 14(3): 133. DOI: 10.1145/2967506
  3. 3Allegraud, P., Bigo, L., Feisthauer, L., Giraud, M., Groult, R., Leguy, E., and Levé, F. (2019). Learning sonata form structure on Mozart’s string quartets. Transactions of the International Society for Music Information Retrieval, 2(1): 8296. DOI: 10.5334/tismir.27
  4. 4Ariza, C. (2011). Two pioneering projects from the early history of computer-aided algorithmic composition. Computer Music Journal, 35(3): 4056. DOI: 10.1162/COMJ_a_00068
  5. 5Assayag, G., Bloch, G., Cont, A., and Dubnov, S. (2010). Interaction with machine improvisation. In The Structure of Style, pages 219245. Springer. DOI: 10.1007/978-3-642-12337-5_10
  6. 6Barbieri, G., Pachet, F., Roy, P., and Degli Esposti, M. (2012). Markov constraints for generating lyrics with style. In European Conference on Artificial Intelligence (ECAI 2012), volume 242, pages 115120.
  7. 7Barlow, H., and Morgenstern, S. (1948). A Dictionary of Musical Themes. Crown Publishers.
  8. 8Ben-Tal, O., Harris, M. T., and Sturm, B. L. (2020). How music AI is useful: Engagements with composers, performers, and audiences. Leonardo, 54(5): 510516. DOI: 10.1162/leon_a_01959
  9. 9Birtchnell, T. (2018). Listening without ears: Artificial intelligence in audio mastering. Big Data & Society, 5(2): 2053951718808553. DOI: 10.1177/2053951718808553
  10. 10Briot, J.-P., Hadjeres, G., and Pachet, F.-D. (2019). Deep Learning Techniques for Music Generation. Springer. arXiv:1709.01620. DOI: 10.1007/978-3-319-70163-9
  11. 11Conklin, D., Gasser, M., and Oertl, S. (2018). Creative chord sequence generation for electronic dance music. Applied Sciences, 8(9): 1704. DOI: 10.3390/app8091704
  12. 12Copeland, B. J., and Long, J. (2017). Turing and the history of computer music. In Floyd, J. and Bokulich, A., editors, Philosophical Explorations of the Legacy of Alan Turing: Turing 100, pages 189218. Springer International Publishing. DOI: 10.1007/978-3-319-53280-6_8
  13. 13Crestel, L., and Esling, P. (2017). Live Orchestral Piano, a system for real-time orchestral music generation. In Sound and Music Computing Conference (SMC 2017), pages 434442.
  14. 14Cuthbert, M. S., and Ariza, C. (2010). music21: A toolkit for computer-aided musicology and symbolic music data. In International Society for Music Information Retrieval Conference (ISMIR 2010), pages 637642.
  15. 15De Man, B., Reiss, J., and Stables, R. (2017). Ten years of automatic mixing. In Workshop on Intelligent Music Production (WIMP 2017).
  16. 16Deruty, E. (2016). Goal-oriented mixing. In Workshop on Intelligent Music Production (WIMP 2016), volume 13.
  17. 17Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., and Sutskever, I. (2020). Jukebox: A generative model for music. arXiv:2005.00341.
  18. 18Dong, H.-W., Hsiao, W.-Y., Yang, L.-C., and Yang, Y.-H. (2018). MuseGAN: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment. In AAAI Conference on Artificial Intelligence (AAAI 2018), volume 32.
  19. 19Eno, B., and Schmidt, P. (1975). Oblique strategies. Boxed set of cards (limited edition).
  20. 20Esling, P., and Devis, N. (2020). Creativity in the era of artificial intelligence. arXiv:2008.05959.
  21. 21Fernández, J. D., and Vico, F. (2013). AI methods in algorithmic composition: A comprehensive survey. Journal of Artificial Intelligence Research, 48(1): 513582. DOI: 10.1613/jair.3908
  22. 22Ghisi, D. (2017). Music across music: Towards a corpus-based, interactive computer-aided composition. PhD thesis, Pierre and Marie Curie University (Paris 6).
  23. 23Gifford, T., Knotts, S., McCormack, J., Kalonaris, S., Yee-King, M., and d’Inverno, M. (2018). Computational systems for music improvisation. Digital Creativity, 29(1): 1936. DOI: 10.1080/14626268.2018.1426613
  24. 24Giraud, M., Groult, R., Leguy, E., and Levé, F. (2015). Computational fugue analysis. Computer Music Journal, 39(2). DOI: 10.1162/COMJ_a_00300
  25. 25Herremans, D., and Chew, E. (2017). Morpheus: Generating structured music with constrained patterns and tension. IEEE Transactions on Affective Computing, 10(4): 510523. DOI: 10.1109/TAFFC.2017.2737984
  26. 26Herremans, D., Chuan, C.-H., and Chew, E. (2017). A functional taxonomy of music generation systems. ACM Computing Surveys, 50(5): 130. DOI: 10.1145/3108242
  27. 27Hiller Jr, L. A., and Isaacson, L. M. (1957). Musical composition with a high speed digital computer. In Audio Engineering Society Convention 9.
  28. 28Huang, C.-Z. A., Duvenaud, D., and Gajos, K. Z. (2016). ChordRipple: Recommending chords to help novice composers go beyond the ordinary. In International Conference on Intelligent User Interfaces (IUI 2016), pages 241250. DOI: 10.1145/2856767.2856792
  29. 29Huang, C.-Z. A., Koops, H. V., Newton-Rex, E., Dinculescu, M., and Cai, C. J. (2020). AI Song Contest: Human-AI co-creation in songwriting. In International Society for Music Information Retrieval Conference (ISMIR 2020).
  30. 30Ji, S., Luo, J., and Yang, X. (2020). A comprehensive survey on deep music generation: Multi-level representations, algorithms, evaluations, and future directions. arXiv:2011.06801.
  31. 31Jordanous, A. (2012). A standardised procedure for evaluating creative systems: Computational creativity evaluation based on what it is to be creative. Cognitive Computation, 4(3): 246279. DOI: 10.1007/s12559-012-9156-1
  32. 32Jordanous, A. (2017). Has computational creativity successfully made it “beyond the fence” in musical theatre? Connection Science, 29: 350386. DOI: 10.1080/09540091.2017.1345857
  33. 33Kantosalo, A., and Jordanous, A. (2020). Role-based perceptions of computer participants in human-computer co-creativity. In AISB Symposium of Computational Creativity (CC@AISB 2020).
  34. 34Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch. Oxford University Press.
  35. 35Krumhansl, C. L., and Kessler, E. J. (1982). Tracing the dynamic changes in perceived tonal organisation in a spatial representation of musical keys. Psychological Review, 89(2): 334368. DOI: 10.1037/0033-295X.89.4.334
  36. 36Louie, R., Coenen, A., Huang, C. Z., Terry, M., and Cai, C. J. (2020). Novice-AI music co-creation via AI-steering tools for deep generative models. In Conference on Human Factors in Computing Systems (CHI 2020), pages 113. DOI: 10.1145/3313831.3376739
  37. 37Lovelace, A. (1843). A sketch of the analytical engine, with notes by the translator. Scientific Memoirs, 3: 666731.
  38. 38Lubart, T. (2005). How can computers be partners in the creative process: Classification and commentary on the special issue. International Journal of Human-Computer Studies, 63(4–5): 365369. DOI: 10.1016/j.ijhcs.2005.04.002
  39. 39McCormack, J., Gifford, T., and Hutchings, P. (2019). Autonomy, authenticity, authorship and intention in computer generated art. In International Conference on Computational Intelligence in Music, Sound, Art and Design (EvoMUSART 2019), pages 3550. DOI: 10.1007/978-3-030-16667-0_3
  40. 40McKeown, L., and Jordanous, A. (2018). An evaluation of the impact of constraints on the perceived creativity of narrative generating software. In International Conference on Computational Creativity (ICCC 2018).
  41. 41Medeot, G., Cherla, S., Kosta, K., McVicar, M., Abdalla, S., Selvi, M., Rex, E., and Webster, K. (2018). StructureNet: Inducing structure in generated melodies. In International Society for Music Information Retrieval Conference (ISMIR 2018).
  42. 42Mehri, S., Kumar, K., Gulrajani, I., Kumar, R., Jain, S., Sotelo, J., Courville, A., and Bengio, Y. (2016). SampleRNN: An unconditional end-to-end neural audio generation model. arXiv:1612.07837.
  43. 43Miller, A. (2020). The Artist in the Machine: The World of AI-Powered Creativity. MIT Press. DOI: 10.7551/mitpress/11585.001.0001
  44. 44Nika, J., Chemillier, M., and Assayag, G. (2017). Improtek: Introducing scenarios into human-computer music improvisation. Computers in Entertainment, 14(2): 127. DOI: 10.1145/3022635
  45. 45Pachet, F., and Roy, P. (2011). Markov constraints: Steerable generation of Markov sequences. Constraints, 16(2): 148172. DOI: 10.1007/s10601-010-9101-4
  46. 46Paiement, J.-F., Eck, D., and Bengio, S. (2005). A probabilistic model for chord progressions. In International Conference on Music Information Retrieval (ISMIR 2005).
  47. 47Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8): 9.
  48. 48Reybrouck, M. M. (2006). Musical creativity between symbolic modelling and perceptual constraints: The role of adaptive behaviour and epistemic autonomy. In Musical Creativity, pages 5876. Psychology Press. DOI: 10.4324/9780203088111-13
  49. 49Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of Mathematics and Music, 5(1): 3553. DOI: 10.1080/17459737.2011.573676
  50. 50Shin, A., Crestel, L., Kato, H., Saito, K., Ohnishi, K., Yamaguchi, M., Nakawaki, M., Ushiku, Y., and Harada, T. (2017). Melody generation for pop music via word representation of musical properties. arXiv:1710.11549.
  51. 51Sloboda, J. A. (1984). Experimental studies of music reading: A review. Music Perception, 2(2): 222236. DOI: 10.2307/40285292
  52. 52Smith, J. B. L., Burgoyne, J. A., Fujinaga, I., De Roure, D., and Downie, J. S. (2011). Design and creation of a large-scale database of structural annotations. In International Society for Music Information Retrieval Conference (ISMIR 2011).
  53. 53Sturm, B. L., and Ben-Tal, O. (2018). Let’s have another Gan Ainm: An experimental album of Irish traditional music and computer-generated tunes. Technical Report, KTH Royal Institute of Technology.
  54. 54Tardon-Garcia, L. J., Barbancho-Perez, I., Barbancho-Perez, A. M., Roig, C., Tzanetakis, G. (2019). Automatic melody composition inspired by short melodies using a probabilistic model and harmonic rules. In International Society for Music Information Retrieval Conference (ISMIR 2019).
  55. 55Temperley, D. (1999). What’s key for key? The Krumhansl-Schmuckler key-finding algorithm reconsidered. Music Perception, 17(1): 65100. DOI: 10.2307/40285812
  56. 56Tsushima, H., Nakamura, E., Itoyama, K., and Yoshii, K. (2018). Interactive arrangement of chords and melodies based on a tree-structured generative model. In International Society for Music Information Retrieval Conference (ISMIR 2018).
  57. 57Yang, L.-C., Chou, S.-Y., and Yang, Y.-H. (2017). MidiNet: A convolutional generative adversarial network for symbolic-domain music generation. In International Society for Music Information Retrieval Conference (ISMIR 2017), pages 324331.
  58. 58Zhou, Y., Chu, W., Young, S., and Chen, X. (2019). BandNet: A neural network-based, multi-instrument Beatles-style MIDI music composition machine. In International Society for Music Information Retrieval Conference (ISMIR 2019).
  59. 59Zhu, H., Liu, Q., Yuan, N. J., Qin, C., Li, J., Zhang, K., Zhou, G., Wei, F., Xu, Y., and Chen, E. (2018). XiaoIce Band: A melody and arrangement generation framework for pop music. In International Conference on Knowledge Discovery and Data Mining (KDD 2018), pages 28372846. DOI: 10.1145/3219819.3220105
DOI: https://doi.org/10.5334/tismir.93 | Journal eISSN: 2514-3298
Language: English
Submitted on: Feb 28, 2021
Accepted on: Sep 9, 2021
Published on: Dec 21, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Gianluca Micchi, Louis Bigo, Mathieu Giraud, Richard Groult, Florence Levé, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.