Have a personal or library account? Click to login
MTD: A Multimodal Dataset of Musical Themes for MIR Research Cover
Open Access
|Oct 2020

References

  1. 1Arzt, A., & Lattner, S. (2018). Audio-to-score alignment using transposition-invariant features. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 592599. Paris, France.
  2. 2Balke, S., Achankunju, S. P., & Müller, M. (2015). Matching musical themes based on noisy OCR and OMR input. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 703707. Brisbane, Australia. DOI: 10.1109/ICASSP.2015.7178060
  3. 3Balke, S., Arifi-Müller, V., Lamprecht, L., & Müller, M. (2016). Retrieving audio recordings using musical themes. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 281285. Shanghai, China. DOI: 10.1109/ICASSP.2016.7471681
  4. 4Barlow, H., & Morgenstern, S. (1975). A Dictionary of Musical Themes. Crown Publishers, Inc., revised edition.
  5. 5Barlow, H., & Morgenstern, S. (1976). A Dictionary of Opera and Song Themes. Crown Publishers, Inc., revised edition.
  6. 6Benetos, E., Dixon, S., Duan, Z., & Ewert, S. (2019). Automatic music transcription: An overview. IEEE Signal Processing Magazine, 36(1), 2030. DOI: 10.1109/MSP.2018.2869928
  7. 7Benward, B., & Saker, M. (2009). Music in Theory and Practice. McGraw Hill, 8th edition.
  8. 8Berman, T., Downie, J. S., & Berman, B. (2006). Beyond error tolerance: Finding thematic similarities in music digital libraries. In Proceedings of the European Conference on Digital Libraries (ECDL), pages 463466. Alicante, Spain. DOI: 10.1007/11863878_44
  9. 9Bittner, R. M., McFee, B., Salamon, J., Li, P., & Bello, J. P. (2017). Deep salience representations for F0 tracking in polyphonic music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 6370. Suzhou, China.
  10. 10Bittner, R. M., Salamon, J., Tierney, M., Mauch, M., Cannam, C., & Bello, J. P. (2014). MedleyDB: A multitrack dataset for annotation-intensive MIR research. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 155160. Taipei, Taiwan.
  11. 11Bosch, J. J., Marxer, R., & Gómez, E. (2016). Evaluation and combination of pitch estimation methods for melody extraction in symphonic classical music. Journal of New Music Research, 45(2), 101117. DOI: 10.1080/09298215.2016.1182191
  12. 12Byrd, D., & Simonsen, J. G. (2015). Towards a standard testbed for optical music recognition: Definitions, metrics, and page images. Journal of New Music Research, 44(3), 169195. DOI: 10.1080/09298215.2015.1045424
  13. 13Calvo-Zaragoza, J., Hajič, J. Jr., & Pacha, A. (2020). Understanding optical music recognition. ACM Computing Surveys, 53(4). DOI: 10.1145/3397499
  14. 14Calvo-Zaragoza, J., & Rizo, D. (2018). End-to-end neural optical music recognition of monophonic scores. Applied Sciences, 8(4). DOI: 10.3390/app8040606
  15. 15Changizi, M. (2011). Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man. BenBella Books.
  16. 16Diet, J., & Gerritsen, M. (2013). Encoding, searching, and displaying of music incipits in the RISM-OPAC. In Proceedings of the Music Encoding Conference (MEC), pages 1114. Mainz, Germany.
  17. 17Dixon, S. (2001). Automatic extraction of tempo and beat from expressive performances. Journal of New Music Research, 30, 3958. DOI: 10.1076/jnmr.30.1.39.7119
  18. 18Dorfer, M., Arzt, A., & Widmer, G. (2016). Towards score following in sheet music images. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 789795. New York, USA.
  19. 19Dorfer, M., Hajič, J. Jr., Arzt, A., Frostel, H., & Widmer, G. (2018). Learning audio-sheet music correspondences for cross-modal retrieval and piece identification. Transactions of the International Society for Music Information Retrieval (TISMIR), 1(1), 2231. DOI: 10.5334/timsir.12
  20. 20Drabkin, W. (2001). Theme. In Grove Music Online. Oxford University Press. DOI: 10.1093/gmo/9781561592630.article.27789
  21. 21Emiya, V., Badeau, R., & David, B. (2010). Multipitch estimation of piano sounds using a new probabilistic spectral smoothness principle. IEEE Transactions on Audio, Speech, and Language Processing, 18(6), 16431654. DOI: 10.1109/TASL.2009.2038819
  22. 22Essid, S., Richard, G., & David, B. (2006). Instrument recognition in polyphonic music based on automatic taxonomies. IEEE Transactions on Audio, Speech, and Language Processing, 14(1), 6880. DOI: 10.1109/TSA.2005.860351
  23. 23Gemmeke, J. F., Ellis, D. P. W., Freedman, D., Jansen, A., Lawrence, W., Moore, R. C., Plakal, M., & Ritter, M. (2017). Audio Set: An ontology and human-labeled dataset for audio events. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 776780. New Orleans, Louisiana, USA. DOI: 10.1109/ICASSP.2017.7952261
  24. 24Giraud, M., Levé, F., Mercier, F., Rigaudière, M., & Thorez, D. (2014). Towards modeling texture in symbolic data. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 5964. Taipei, Taiwan.
  25. 25Goto, M. (2004). Development of the RWC music database. In Proceedings of the International Congress on Acoustics (ICA), pages 553556.
  26. 26Graves, A., Fernández, S., Gomez, F. J., & Schmidhuber, J. (2006). Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. In Proceedings of the 23rd International Conference on Machine Learning (ICML), pages 369376. Pittsburgh, Pennsylvania, USA. DOI: 10.1145/1143844.1143891
  27. 27Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C.-Z. A., Dieleman, S., Elsen, E., Engel, J., & Eck, D. (2019). Enabling factorized piano music modeling and generation with the MAESTRO dataset. In Proceedings of the International Conference on Learning Representations (ICLR). New Orleans, Louisiana, USA.
  28. 28Joder, C., Essid, S., & Richard, G. (2013). Learning optimal features for polyphonic audio-to-score alignment. IEEE Transactions on Audio, Speech & Language Processing, 21(10), 21182128. DOI: 10.1109/TASL.2013.2266794
  29. 29Kornstädt, A. (1998). Themefinder: A web-based melodic search tool. Computing in Musicology, 11.
  30. 30Lerch, A., Arthur, C., Pati, A., & Gururani, S. (2019). Music performance analysis: A survey. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 3343. Delft, The Netherlands.
  31. 31London, J. (2013). Building a representative corpus of classical music. Music Perception, 31(1), 6890. DOI: 10.1525/mp.2013.31.1.68
  32. 32McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., & Nieto, O. (2015). Librosa: Audio and music signal analysis in Python. In Proceedings the Python Science Conference, pages 1825. Austin, Texas, USA. DOI: 10.25080/Majora-7b98e3ed-003
  33. 33Meek, C., & Birmingham, W. P. (2001). Thematic extractor. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR). Bloomington, Indiana, USA.
  34. 34Morfi, V., Bas, Y., Pamula, H., Glotin, H., & Stowell, D. (2019). Nips4bplus: A richly annotated birdsong audio dataset. PeerJ Computer Science, 5, e223. DOI: 10.7717/peerj-cs.223
  35. 35Müller, M., Arzt, A., Balke, S., Dorfer, M., & Widmer, G. (2019). Cross-modal music retrieval and applications: An overview of key methodologies. IEEE Signal Processing Magazine, 36(1), 5262. DOI: 10.1109/MSP.2018.2868887
  36. 36Müller, M., Konz, V., Bogler, W., & Arifi-Müller, V. (2011). Saarland Music Data (SMD). In Late-Breaking and Demo Session of the 12th International Conference on Music Information Retrieval (ISMIR). Miami, USA.
  37. 37Müller, M., Konz, V., Scharfstein, A., Ewert, S., & Clausen, M. (2009). Towards automated extraction of tempo parameters from expressive music recordings. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 6974. Kobe, Japan.
  38. 38Müller, M., Kurth, F., & Röder, T. (2004). Towards an efficient algorithm for automatic score-to-audio synchronization. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 365372. Barcelona, Spain.
  39. 39Müller, M., & Zalkow, F. (2019). FMP notebooks: Educational material for teaching and learning fundamentals of music processing. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 573580. Delft, The Netherlands.
  40. 40Parsons, D. (1975). The Directory of Tunes and Musical Themes. S. Brown.
  41. 41Pollastri, E., & Simoncelli, G. (2001). Classification of melodies by composer with hidden Markov models. In Proceedings of the International Conference on WEB Delivering of Music (WEDELMUSIC), pages 8895. Florence, Italy. DOI: 10.1109/WDM.2001.990162
  42. 42Prechelt, L., & Typke, R. (2001). An interface for melody input. ACM Transactions on Computer-Human Interaction, 8(2), 133149. DOI: 10.1145/376929.376978
  43. 43Raffel, C., & Ellis, D. P. W. (2014). Intuitive analysis, creation and manipulation of MIDI data with pretty_midi. In Demos and Late Breaking News of the International Society for Music Information Retrieval Conference (ISMIR). Taipei, Taiwan.
  44. 44Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marcal, A. R. S., Guedes, C., & Cardoso, J. S. (2012). Optical music recognition: State-of-the-art and open issues. International Journal of Multimedia Information Retrieval, 1(3), 173190. DOI: 10.1007/s13735-012-0004-6
  45. 45Reti, R. (1951). The Thematic Process in Music. The Macmillan Company.
  46. 46Rosenzweig, S., Scherbaum, F., Shugliashvili, D., Arifi-Müller, V., & Müller, M. (2020). Erkomaishvili Dataset: A curated corpus of traditional Georgian vocal music for computational musicology. Transactions of the International Society for Music Information Retrieval (TISMIR), 3(1), 3141. DOI: 10.5334/tismir.44
  47. 47Salamon, J., Gómez, E., Ellis, D. P. W., & Richard, G. (2014). Melody extraction from polyphonic music signals: Approaches, applications, and challenges. IEEE Signal Processing Magazine, 31(2), 118134. DOI: 10.1109/MSP.2013.2271648
  48. 48Salamon, J., Serrà, J., & Gómez, E. (2013). Tonal representations for music retrieval: From version identification to query-by-humming. International Journal of Multimedia Information Retrieval, 2(1), 4558. DOI: 10.1007/s13735-012-0026-0
  49. 49Schörkhuber, C., & Klapuri, A. P. (2010). Constant-Q transform toolbox for music processing. In Proceedings of the Sound and Music Computing Conference (SMC), pages 322329. Barcelona, Spain.
  50. 50Serra, X. (2014). Creating research corpora for the computational study of music: The case of the CompMusic project. In Proceedings of the AES International Conference on Semantic Audio. London, UK.
  51. 51Simonetta, F., Chacón, C. E. C., Ntalampiras, S., & Widmer, G. (2019). A convolutional approach to melody line identification in symbolic scores. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 924931. Delft, The Netherlands.
  52. 52Simonton, D. K. (1980). Thematic fame, melodic originality, and musical zeitgeist: A biographical and transhistorical content analysis. Journal of Personality and Social Psychology, 38(6), 972983. DOI: 10.1037/0022-3514.38.6.972
  53. 53Simonton, D. K. (1991). Emergence and realization of genius: The lives and works of 120 classical composers. Journal of Personality and Social Psychology, 61(5), 829840. DOI: 10.1037/0022-3514.61.5.829
  54. 54Stoller, D., Durand, S., & Ewert, S. (2019). End-to-end lyrics alignment for polyphonic music using an audio-to-character recognition model. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 181185. Brighton, UK. DOI: 10.1109/ICASSP.2019.8683470
  55. 55Swartz, A. (2002). MusicBrainz: A semantic web service. IEEE Intelligent Systems, 17(1), 7677. DOI: 10.1109/5254.988466
  56. 56Thickstun, J., Harchaoui, Z., & Kakade, S. M. (2017). Learning features of music from scratch. In Proceedings of the 5th International Conference on Learning Representations (ICLR). Toulon, France.
  57. 57Timmers, R., Dibben, N., Eitan, Z., Granot, R., Metcalfe, T., Schiavio, A., & Williamson, V. (2015). Introduction to the proceedings of ICMEM 2015. In Proceedings of the International Conference on the Multimodal Experience of Music (ICMEM). Sheffield, UK.
  58. 58Uitdenbogerd, A. L., & Yap, Y. W. (2003). Was Parsons right? An experiment in usability of music representations for melody-based music retrieval. In Proceedings of the International Conference on Music Information Retrieval (ISMIR). Baltimore, Maryland, USA.
  59. 59Verma, H., & Thickstun, J. (2019). Convolutional composer classification. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 549556. Delft, The Netherlands.
  60. 60Volk, A., Wiering, F., & Kranenburg, P. V. (2011). Unfolding the potential of computational musicology. In Proceedings of the International Conference on Informatics and Semiotics in Organisations (ICISO), pages 137144. Leeuwarden, The Netherlands.
  61. 61Vos, P. G., & Troost, J. M. (1989). Ascending and descending melodic intervals: Statistical findings and their perceptual relevance. Music Perception, 6(4), 383396. DOI: 10.2307/40285439
  62. 62Zalkow, F., Balke, S., & Müller, M. (2019). Evaluating salience representations for cross-modal retrieval of Western classical music recordings. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 331335. Brighton, United Kingdom. DOI: 10.1109/ICASSP.2019.8683609
  63. 63Zalkow, F., & Müller, M. (2020). Using weakly aligned score-audio pairs to train deep chroma models for cross-modal music retrieval. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 184191. Montréal, Canada.
DOI: https://doi.org/10.5334/tismir.68 | Journal eISSN: 2514-3298
Language: English
Submitted on: Jul 23, 2020
Accepted on: Sep 21, 2020
Published on: Oct 21, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Frank Zalkow, Stefan Balke, Vlora Arifi-Müller, Meinard Müller, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.