References
- 1Arzt, A., & Lattner, S. (2018). Audio-to-score alignment using transposition-invariant features. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 592–599. Paris, France.
- 2Balke, S., Achankunju, S. P., & Müller, M. (2015). Matching musical themes based on noisy OCR and OMR input. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 703–707. Brisbane, Australia. DOI: 10.1109/ICASSP.2015.7178060
- 3Balke, S., Arifi-Müller, V., Lamprecht, L., & Müller, M. (2016). Retrieving audio recordings using musical themes. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 281–285. Shanghai, China. DOI: 10.1109/ICASSP.2016.7471681
- 4Barlow, H., & Morgenstern, S. (1975). A Dictionary of Musical Themes. Crown Publishers, Inc., revised edition.
- 5Barlow, H., & Morgenstern, S. (1976). A Dictionary of Opera and Song Themes. Crown Publishers, Inc., revised edition.
- 6Benetos, E., Dixon, S., Duan, Z., & Ewert, S. (2019). Automatic music transcription: An overview. IEEE Signal Processing Magazine, 36(1), 20–30. DOI: 10.1109/MSP.2018.2869928
- 7Benward, B., & Saker, M. (2009). Music in Theory and Practice. McGraw Hill, 8th edition.
- 8Berman, T., Downie, J. S., & Berman, B. (2006). Beyond error tolerance: Finding thematic similarities in music digital libraries. In Proceedings of the European Conference on Digital Libraries (ECDL), pages 463–466. Alicante, Spain. DOI: 10.1007/11863878_44
- 9Bittner, R. M., McFee, B., Salamon, J., Li, P., & Bello, J. P. (2017). Deep salience representations for F0 tracking in polyphonic music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 63–70. Suzhou, China.
- 10Bittner, R. M., Salamon, J., Tierney, M., Mauch, M., Cannam, C., & Bello, J. P. (2014). MedleyDB: A multitrack dataset for annotation-intensive MIR research. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 155–160. Taipei, Taiwan.
- 11Bosch, J. J., Marxer, R., & Gómez, E. (2016). Evaluation and combination of pitch estimation methods for melody extraction in symphonic classical music. Journal of New Music Research, 45(2), 101–117. DOI: 10.1080/09298215.2016.1182191
- 12Byrd, D., & Simonsen, J. G. (2015). Towards a standard testbed for optical music recognition: Definitions, metrics, and page images. Journal of New Music Research, 44(3), 169–195. DOI: 10.1080/09298215.2015.1045424
- 13Calvo-Zaragoza, J., Hajič, J.
Jr. , & Pacha, A. (2020). Understanding optical music recognition. ACM Computing Surveys, 53(4). DOI: 10.1145/3397499 - 14Calvo-Zaragoza, J., & Rizo, D. (2018). End-to-end neural optical music recognition of monophonic scores. Applied Sciences, 8(4). DOI: 10.3390/app8040606
- 15Changizi, M. (2011). Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man. BenBella Books.
- 16Diet, J., & Gerritsen, M. (2013). Encoding, searching, and displaying of music incipits in the RISM-OPAC. In Proceedings of the Music Encoding Conference (MEC), pages 11–14. Mainz, Germany.
- 17Dixon, S. (2001). Automatic extraction of tempo and beat from expressive performances. Journal of New Music Research, 30, 39–58. DOI: 10.1076/jnmr.30.1.39.7119
- 18Dorfer, M., Arzt, A., & Widmer, G. (2016). Towards score following in sheet music images. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 789–795. New York, USA.
- 19Dorfer, M., Hajič, J.
Jr. , Arzt, A., Frostel, H., & Widmer, G. (2018). Learning audio-sheet music correspondences for cross-modal retrieval and piece identification. Transactions of the International Society for Music Information Retrieval (TISMIR), 1(1), 22–31. DOI: 10.5334/timsir.12 - 20Drabkin, W. (2001).
Theme . In Grove Music Online. Oxford University Press. DOI: 10.1093/gmo/9781561592630.article.27789 - 21Emiya, V., Badeau, R., & David, B. (2010). Multipitch estimation of piano sounds using a new probabilistic spectral smoothness principle. IEEE Transactions on Audio, Speech, and Language Processing, 18(6), 1643–1654. DOI: 10.1109/TASL.2009.2038819
- 22Essid, S., Richard, G., & David, B. (2006). Instrument recognition in polyphonic music based on automatic taxonomies. IEEE Transactions on Audio, Speech, and Language Processing, 14(1), 68–80. DOI: 10.1109/TSA.2005.860351
- 23Gemmeke, J. F., Ellis, D. P. W., Freedman, D., Jansen, A., Lawrence, W., Moore, R. C., Plakal, M., & Ritter, M. (2017). Audio Set: An ontology and human-labeled dataset for audio events. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 776–780. New Orleans, Louisiana, USA. DOI: 10.1109/ICASSP.2017.7952261
- 24Giraud, M., Levé, F., Mercier, F., Rigaudière, M., & Thorez, D. (2014). Towards modeling texture in symbolic data. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 59–64. Taipei, Taiwan.
- 25Goto, M. (2004). Development of the RWC music database. In Proceedings of the International Congress on Acoustics (ICA), pages 553–556.
- 26Graves, A., Fernández, S., Gomez, F. J., & Schmidhuber, J. (2006). Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. In Proceedings of the 23rd International Conference on Machine Learning (ICML), pages 369–376. Pittsburgh, Pennsylvania, USA. DOI: 10.1145/1143844.1143891
- 27Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C.-Z. A., Dieleman, S., Elsen, E., Engel, J., & Eck, D. (2019). Enabling factorized piano music modeling and generation with the MAESTRO dataset. In Proceedings of the International Conference on Learning Representations (ICLR). New Orleans, Louisiana, USA.
- 28Joder, C., Essid, S., & Richard, G. (2013). Learning optimal features for polyphonic audio-to-score alignment. IEEE Transactions on Audio, Speech & Language Processing, 21(10), 2118–2128. DOI: 10.1109/TASL.2013.2266794
- 29Kornstädt, A. (1998). Themefinder: A web-based melodic search tool. Computing in Musicology, 11.
- 30Lerch, A., Arthur, C., Pati, A., & Gururani, S. (2019). Music performance analysis: A survey. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 33–43. Delft, The Netherlands.
- 31London, J. (2013). Building a representative corpus of classical music. Music Perception, 31(1), 68–90. DOI: 10.1525/mp.2013.31.1.68
- 32McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., & Nieto, O. (2015). Librosa: Audio and music signal analysis in Python. In Proceedings the Python Science Conference, pages 18–25. Austin, Texas, USA. DOI: 10.25080/Majora-7b98e3ed-003
- 33Meek, C., & Birmingham, W. P. (2001). Thematic extractor. In Proceedings of the International Symposium on Music Information Retrieval (ISMIR). Bloomington, Indiana, USA.
- 34Morfi, V., Bas, Y., Pamula, H., Glotin, H., & Stowell, D. (2019). Nips4bplus: A richly annotated birdsong audio dataset. PeerJ Computer Science, 5,
e223 . DOI: 10.7717/peerj-cs.223 - 35Müller, M., Arzt, A., Balke, S., Dorfer, M., & Widmer, G. (2019). Cross-modal music retrieval and applications: An overview of key methodologies. IEEE Signal Processing Magazine, 36(1), 52–62. DOI: 10.1109/MSP.2018.2868887
- 36Müller, M., Konz, V., Bogler, W., & Arifi-Müller, V. (2011). Saarland Music Data (SMD). In Late-Breaking and Demo Session of the 12th International Conference on Music Information Retrieval (ISMIR). Miami, USA.
- 37Müller, M., Konz, V., Scharfstein, A., Ewert, S., & Clausen, M. (2009). Towards automated extraction of tempo parameters from expressive music recordings. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 69–74. Kobe, Japan.
- 38Müller, M., Kurth, F., & Röder, T. (2004). Towards an efficient algorithm for automatic score-to-audio synchronization. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 365–372. Barcelona, Spain.
- 39Müller, M., & Zalkow, F. (2019). FMP notebooks: Educational material for teaching and learning fundamentals of music processing. In Proceedings of the International Conference on Music Information Retrieval (ISMIR), pages 573–580. Delft, The Netherlands.
- 40Parsons, D. (1975). The Directory of Tunes and Musical Themes. S. Brown.
- 41Pollastri, E., & Simoncelli, G. (2001). Classification of melodies by composer with hidden Markov models. In Proceedings of the International Conference on WEB Delivering of Music (WEDELMUSIC), pages 88–95. Florence, Italy. DOI: 10.1109/WDM.2001.990162
- 42Prechelt, L., & Typke, R. (2001). An interface for melody input. ACM Transactions on Computer-Human Interaction, 8(2), 133–149. DOI: 10.1145/376929.376978
- 43Raffel, C., & Ellis, D. P. W. (2014). Intuitive analysis, creation and manipulation of MIDI data with pretty_midi. In Demos and Late Breaking News of the International Society for Music Information Retrieval Conference (ISMIR). Taipei, Taiwan.
- 44Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marcal, A. R. S., Guedes, C., & Cardoso, J. S. (2012). Optical music recognition: State-of-the-art and open issues. International Journal of Multimedia Information Retrieval, 1(3), 173–190. DOI: 10.1007/s13735-012-0004-6
- 45Reti, R. (1951). The Thematic Process in Music. The Macmillan Company.
- 46Rosenzweig, S., Scherbaum, F., Shugliashvili, D., Arifi-Müller, V., & Müller, M. (2020). Erkomaishvili Dataset: A curated corpus of traditional Georgian vocal music for computational musicology. Transactions of the International Society for Music Information Retrieval (TISMIR), 3(1), 31–41. DOI: 10.5334/tismir.44
- 47Salamon, J., Gómez, E., Ellis, D. P. W., & Richard, G. (2014). Melody extraction from polyphonic music signals: Approaches, applications, and challenges. IEEE Signal Processing Magazine, 31(2), 118–134. DOI: 10.1109/MSP.2013.2271648
- 48Salamon, J., Serrà, J., & Gómez, E. (2013). Tonal representations for music retrieval: From version identification to query-by-humming. International Journal of Multimedia Information Retrieval, 2(1), 45–58. DOI: 10.1007/s13735-012-0026-0
- 49Schörkhuber, C., & Klapuri, A. P. (2010). Constant-Q transform toolbox for music processing. In Proceedings of the Sound and Music Computing Conference (SMC), pages 322–329. Barcelona, Spain.
- 50Serra, X. (2014). Creating research corpora for the computational study of music: The case of the CompMusic project. In Proceedings of the AES International Conference on Semantic Audio. London, UK.
- 51Simonetta, F., Chacón, C. E. C., Ntalampiras, S., & Widmer, G. (2019). A convolutional approach to melody line identification in symbolic scores. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 924–931. Delft, The Netherlands.
- 52Simonton, D. K. (1980). Thematic fame, melodic originality, and musical zeitgeist: A biographical and transhistorical content analysis. Journal of Personality and Social Psychology, 38(6), 972–983. DOI: 10.1037/0022-3514.38.6.972
- 53Simonton, D. K. (1991). Emergence and realization of genius: The lives and works of 120 classical composers. Journal of Personality and Social Psychology, 61(5), 829–840. DOI: 10.1037/0022-3514.61.5.829
- 54Stoller, D., Durand, S., & Ewert, S. (2019). End-to-end lyrics alignment for polyphonic music using an audio-to-character recognition model. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 181–185. Brighton, UK. DOI: 10.1109/ICASSP.2019.8683470
- 55Swartz, A. (2002). MusicBrainz: A semantic web service. IEEE Intelligent Systems, 17(1), 76–77. DOI: 10.1109/5254.988466
- 56Thickstun, J., Harchaoui, Z., & Kakade, S. M. (2017). Learning features of music from scratch. In Proceedings of the 5th International Conference on Learning Representations (ICLR). Toulon, France.
- 57Timmers, R., Dibben, N., Eitan, Z., Granot, R., Metcalfe, T., Schiavio, A., & Williamson, V. (2015). Introduction to the proceedings of ICMEM 2015. In Proceedings of the International Conference on the Multimodal Experience of Music (ICMEM). Sheffield, UK.
- 58Uitdenbogerd, A. L., & Yap, Y. W. (2003). Was Parsons right? An experiment in usability of music representations for melody-based music retrieval. In Proceedings of the International Conference on Music Information Retrieval (ISMIR). Baltimore, Maryland, USA.
- 59Verma, H., & Thickstun, J. (2019). Convolutional composer classification. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 549–556. Delft, The Netherlands.
- 60Volk, A., Wiering, F., & Kranenburg, P. V. (2011). Unfolding the potential of computational musicology. In Proceedings of the International Conference on Informatics and Semiotics in Organisations (ICISO), pages 137–144. Leeuwarden, The Netherlands.
- 61Vos, P. G., & Troost, J. M. (1989). Ascending and descending melodic intervals: Statistical findings and their perceptual relevance. Music Perception, 6(4), 383–396. DOI: 10.2307/40285439
- 62Zalkow, F., Balke, S., & Müller, M. (2019). Evaluating salience representations for cross-modal retrieval of Western classical music recordings. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 331–335. Brighton, United Kingdom. DOI: 10.1109/ICASSP.2019.8683609
- 63Zalkow, F., & Müller, M. (2020). Using weakly aligned score-audio pairs to train deep chroma models for cross-modal music retrieval. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 184–191. Montréal, Canada.
