Have a personal or library account? Click to login
Structural Segmentation of Alap in Dhrupad Vocal Concerts Cover

References

  1. 1Allegraud, P., Bigo, L., Feisthauer, L., Giraud, M., Groult, R., Leguy, E., & Levé, F. (2019). Learning sonata form structure on Mozart’s string quartets. Transactions of the International Society for Music Information Retrieval, 2(1), 8296. DOI: 10.5334/tismir.27
  2. 2Bartsch, M. A., & Wakefield, G. H. (2005). Audio thumbnailing of popular music using chromabased representations. IEEE Transactions on Multimedia, 7(1), 96104. DOI: 10.1109/TMM.2004.840597
  3. 3Bello, J. P., Daudet, L., Abdallah, S., Duxbury, C., Davies, M., & Sandler, M. B. (2005). A tutorial on onset detection in music signals. IEEE Transactions on Speech and Audio Processing, 13(5), 10351047. DOI: 10.1109/TSA.2005.851998
  4. 4Boersma, P., & Weenink, D. (2017). Praat: Doing phonetics by computer [computer program]. Version 6.0.28. http://www.praat.org/. Retrieved March 3, 2017.
  5. 5Chen, S., & Gopalakrishnan, P. (1998). Speaker, environment and channel change detection and clustering via the Bayesian information criterion. In Proc. of the DARPA Broadcast News Transcription and Understanding Workshop, volume 8, pages 127132, Virginia, USA.
  6. 6Clarke, E. F. (1999). Rhythm and timing in music. In The Psychology of Music (Second Edition), pages 473500. Elsevier. DOI: 10.1016/B978-012213564-4/50014-7
  7. 7Clayton, M. (2001). Time in Indian Music: Rhythm, Metre, and Form in North Indian Rag Performance, Chapter 11: A case study in rhythmic analysis. Oxford University Press, UK.
  8. 8Cooper, M., & Foote, J. (2003). Summarizing popular music via structural similarity analysis. In Proc. of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pages 127130. DOI: 10.1109/ASPAA.2003.1285836
  9. 9Dannenberg, R. B., & Goto, M. (2008). Music structure analysis from acoustic signals. In Handbook of Signal Processing in Acoustics, pages 305331. Springer. DOI: 10.1007/978-0-387-30441-0_21
  10. 10Dixon, S. (2001). Automatic extraction of tempo and beat from expressive performances. Journal of New Music Research, 30(1), 3958. DOI: 10.1076/jnmr.30.1.39.7119
  11. 11Foote, J. (2000). Automatic audio segmentation using a measure of audio novelty. In Proc. of the IEEE International Conference on Multimedia and Expo, volume 1, pages 452455. DOI: 10.1109/ICME.2000.869637
  12. 12Foote, J. T., & Cooper, M. L. (2003). Media segmentation using self-similarity decomposition. In Proc. SPIE 5021, Storage and Retrieval for Media Databases 2003, pages 167176. DOI: 10.1117/12.476302
  13. 13Grosche, P., Müller, M., & Kurth, F. (2010). Cyclic tempogram: A mid-level tempo representation for music signals. In Proc. of the IEEE International Conference on Acoustics Speech and Signal Processing, pages 55225525. DOI: 10.1109/ICASSP.2010.5495219
  14. 14Gulati, S., & Rao, P. (2010). Rhythm pattern representations for tempo detection in music. In Proc. of the First International Conference on Intelligent Interactive Technologies and Multimedia, pages 241244. DOI: 10.1145/1963564.1963606
  15. 15Hermes, D. J. (1990). Vowel-onset detection. Journal of the Acoustical Society of America, 87(2), 866873. DOI: 10.1121/1.398896
  16. 16Jensen, K. (2006). Multiple scale music segmentation using rhythm, timbre, and harmony. EURASIP Journal on Advances in Signal Processing, 2007(1), 111. DOI: 10.1155/2007/73205
  17. 17Jensen, K., Xu, J., & Zachariasen, M. (2005). Rhythm-based segmentation of popular Chinese music. In Proc. of the International Conference on Music Information Retrieval, pages 374380.
  18. 18Klapuri, A., Virtanen, T., Eronen, A., & Seppänen, J. (2001). Automatic transcription of musical recordings. In Proc. of the Consistent & Reliable Acoustic Cues Workshop. Aalborg, Denmark. DOI: 10.1109/ICCIMA.2007.138
  19. 19Kumar, P. P., Rao, P., & Roy, S. D. (2007). Note onset detection in natural humming. In Proc. of the IEEE International Conference on Computational Intelligence and Multimedia Applications, volume 4, pages 176180.
  20. 20Logan, B. (2000). Mel frequency cepstral coefficients for music modeling. In Proc. of the International Symposium on Music Information Retrieval.
  21. 21McCallum, M. C. (2019). Unsupervised learning of deep features for music segmentation. In Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, pages 346350. DOI: 10.1109/ICASSP.2019.8683407
  22. 22McFee, B., Nieto, O., Farbood, M. M., & Bello, J. P. (2017). Evaluating hierarchical structure in music annotations. Frontiers in Psychology, 8, 1337. DOI: 10.3389/fpsyg.2017.01337
  23. 23Paulus, J., Müller, M., & Klapuri, A. (2010). State of the art report: Audio-based music structure analysis. In Proc. of the International Society for Music Information Retrieval Conference, pages 625636.
  24. 24Peeters, G. (2003). Deriving musical structures from signal analysis for music audio summary generation: “Sequence” and “state” approach. In Proc. of the International Symposium on Computer Music Modeling and Retrieval, pages 143166. DOI: 10.1007/978-3-540-39900-1_14
  25. 25Peeters, G. (2007). Template-based estimation of timevarying tempo. EURASIP Journal on Applied Signal Processing, 2007(1), 158171. DOI: 10.1155/2007/67215
  26. 26Peeters, G., & Deruty, E. (2009). Is music structure annotation multi-dimensional? A proposal for robust local music annotation. In Proc. of 3rd Workshop on Learning the Semantics of Audio Signals, pages 7590.
  27. 27Ranganathan, S. (2013). Compositional models and aesthetic experience in dhruvapada. The Music Academy Journal, 84.
  28. 28Ranjani, H., & Sreenivas, T. (2013). Hierarchical classification of Carnatic music forms. In Proc. of the International Society for Music Information Retrieval Conference.
  29. 29Serra, X. (2011). A multicultural approach in music information research. In Proc. of the 12th International Society for Music Information Retrieval Conference, pages 151156.
  30. 30Smith, J. B. L., Burgoyne, J. A., Fujinaga, I., De Roure, D., & Downie, J. S. (2011). Design and creation of a large-scale database of structural annotations. In Proc. of the International Society for Music Information Retrieval Conference, pages 555–560.
  31. 31Srinivasamurthy, A., Holzapfel, A., & Serra, X. (2014). In search of automatic rhythm analysis methods for Turkish and Indian art music. Journal of New Music Research, 43(1), 94114. DOI: 10.1080/09298215.2013.879902
  32. 32Sundberg, J. (1990). What’s so special about singers? Journal of Voice, 4(2), 107119. DOI: 10.1016/S0892-1997(05)80135-3
  33. 33Thoshkahna, B., Müller, M., Kulkarni, V., & Jiang, N. (2015). Novel audio features for capturing tempo salience in music recordings. In Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, pages 181185. DOI: 10.1109/ICASSP.2015.7177956
  34. 34Tian, M., & Sandler, M. B. (2016). Towards music structural segmentation across genres: Features, structural hypotheses, and annotation principles. ACM Transactions on Intelligent Systems and Technology, 8(2), 23. DOI: 10.1145/2950066
  35. 35Turnbull, D., Lanckriet, G. R., Pampalk, E., & Goto, M. (2007). A supervised approach for detecting boundaries in music using difference features and boosting. In Proc. of the International Conference on Music Information Retrieval, pages 5154.
  36. 36Ullrich, K., Schlüter, J., & Grill, T. (2014). Boundary detection in music structure analysis using convolutional neural networks. In Proc. of the International Society for Music Information Retrieval Conference, pages 417422.
  37. 37Verma, P., Vinutha, T. P., Pandit, P., & Rao, P. (2015). Structural segmentation of Hindustani concert audio with posterior features. In Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, pages 136140. DOI: 10.1109/ICASSP.2015.7177947
  38. 38Vinutha, T. P., Sankagiri, S., Ganguli, K. K., & Rao, P. (2016). Structural segmentation and visualization of sitar and sarod concert audio. In Proc. of the International Society for Music Information Retrieval Conference, pages 232238.
  39. 39Wade, B. C. (2001). Music in India: The classical traditions, Chapter 7: Performance Genres of Hindustani Music. Manohar Publishers.
  40. 40Widdess, R. (1994). Involving the performers in transcription and analysis: A collaborative approach to dhrupad. Ethnomusicology, 38(1), 5979. DOI: 10.2307/852268
  41. 41Widdess, R. (2011). Dynamics of melodic discourse in Indian music: Budhaditya Mukherjee’s ālāp in rāg pūriyā-kalyān. In M. Tenzer & J. Roeder (Eds.), Analytical and Cross-Cultural Studies in World Music, pages 187224. Oxford University Press. DOI: 10.1093/acprof:oso/9780195384581.003.0005
  42. 42Widdess, R. (2013). Schemas and improvisation in Indian music. In R. Kempson, C. Howes & M. Orwin (Eds.), Language, Music and Interaction, pages 197209. College Publications.
DOI: https://doi.org/10.5334/tismir.64 | Journal eISSN: 2514-3298
Language: English
Submitted on: May 5, 2020
Accepted on: Jul 7, 2020
Published on: Sep 16, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Preeti Rao, Thallam Prasad Vinutha, Mattur Ananthanarayana Rohit, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.