References
- 1Andjelkovic, I., Parra, D., & O’Donovan, J. (2019). Moodplay: Interactive music recommendation based on artists’ mood similarity. International Journal of Human-Computer Studies, 121, 142–159. Advances in Computer-Human Interaction for Recommender Systems. DOI: 10.1016/j.ijhcs.2018.04.004
- 2Barrington, L., O’Malley, D., Turnbull, D., & Lanckriet, G. (2009). User-centered design of a social game to tag music. In Proceedings of the ACM SIGKDD Workshop on Human Computation (HCOMP 2009), pages 7–10. DOI: 10.1145/1600150.1600152
- 3Behrooz, M., Mennicken, S., Thom, J., Kumar, R., & Cramer, H. (2019). Augmenting music listening experiences on voice assistants. In Proceedings of the 20th International Society for Music Information Retrieval Conference, pages 303–310, Delft, The Netherlands.
ISMIR . - 4Bertin-Mahieux, T., Eck, D., Maillet, F., & Lamere, P. (2008). Autotagger: A model for predicting social tags from acoustic features on large music databases. Journal of New Music Research, 37(2), 115–135. DOI: 10.1080/09298210802479250
- 5Bischoff, K., Firan, C. S., Nejdl, W., & Paiu, R. (2008). Can all tags be used for search? In Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM ’08, pages 193–202, New York, NY, USA.
Association for Computing Machinery . DOI: 10.1145/1458082.1458112 - 6Bonnin, G., & Jannach, D. (2014). Automated generation of music playlists: Survey and experiments. ACM Computing Surveys, 47(2), 26:1–26:35. DOI: 10.1145/2652481
- 7Brown, B. A. T., Geelhoed, E., & Sellen, A. (2001). The use of conventional and new music media: Implications for future technologies. In Hirose, M., editor, Human-Computer Interaction INTERACT ’01: IFIP TC13 International Conference on Human-Computer Interaction, pages 67–75.
IOS Press . - 8Bull, M. (2006).
Investigating the culture of mobile listening: From Walkman to iPod . In O’Hara, K. and Brown, B., editors, Consuming Music Together: Social and Collaborative Aspects of Music Consumption Technologies, pages 131–149. Springer Netherlands, Dordrecht. DOI: 10.1007/1-4020-4097-0_7 - 9Burke, R. (2000).
Knowledge-based recommender systems . In Encyclopedia of Library and Information Systems, volume 69, pages 180–200. Marcel Dekker: New York, NY, USA. - 10Byrd, D., & Fingerhut, M. (2002). The history of ISMIR – a short happy tale. D-Lib Magazine, 8(11).
- 11Casey, M., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., & Slaney, M. (2008). Content-based music information retrieval: Current directions and future challenges. Proceedings of the IEEE, 96(4), 668–696. DOI: 10.1109/JPROC.2008.916370
- 12Celma, O. (2010). Music Recommendation and Discovery – The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer. DOI: 10.1007/978-3-642-13287-2
- 13Chen, L., & Pu, P. (2012). Critiquing-based recommenders: Survey and emerging trends. User Modeling and User-Adapted Interaction, 22(1), 125–150. DOI: 10.1007/s11257-011-9108-6
- 14Cunningham, S. J. (2019).
Interacting with personal music collections . In Taylor, N. G., Christian-Lamb, C., Martin, M. H., & Nardi, B., editors, Information in Contemporary Society, pages 526–536, Cham. Springer International Publishing. DOI: 10.1007/978-3-030-15742-5_50 - 15Cunningham, S. J., Bainbridge, D., & Bainbridge, A. (2017).
Exploring personal music collection behavior . In Choemprayong, S., Crestani, F., & Cunningham, S. J., editors, Digital Libraries: Data, Information, and Knowledge for Digital Lives, pages 295–306, Cham. Springer International Publishing. DOI: 10.1007/978-3-319-70232-2_25 - 16Davies, M. E. P., Hamel, P., Yoshii, K., & Goto, M. (2014). AutoMashUpper: Automatic creation of multi-song music mashups. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12), 1726–1737. DOI: 10.1109/TASLP.2014.2347135
- 17Deng, S., Wang, D., Li, X., & Xu, G. (2015). Exploring user emotion in microblogs for music recommendation. Expert Systems with Applications, 42(23), 9284–9293. DOI: 10.1016/j.eswa.2015.08.029
- 18Dinculescu, M., Engel, J., & Roberts, A. (2019). MidiMe: Personalizing a MusicVAE model with user data. In NeurIPS Workshop on Machine Learning for Creativity and Design.
- 19Dittenbach, M., Merkl, D., & Rauber, A. (2001). Hierarchical clustering of document archives with the growing hierarchical self-organizing map. In Proceedings of the International Conference on Artificial Neural Networks (ICANN 2001). DOI: 10.1007/3-540-44668-0_70
- 20Downie, J. S. (2004). The scientific evaluation of music information retrieval systems: Foundations and future. Computer Music Journal, 28, 12–23. DOI: 10.1162/014892604323112211
- 21Dredge, S. (2018). Everybody’s talkin’: Smart speakers & their impact on music consumption. Technical report, Music Ally report to BPI and ERA.
- 22Eck, D., Lamere, P., Bertin-Mahieux, T., & Green, S. (2008). Automatic generation of social tags for music recommendation. In Advances in Neural Information Processing Systems 20 (NIPS 2007).
- 23Fernández-Tobías, I., Braunhofer, M., Elahi, M., Ricci, F., & Cantador, I. (2016). Alleviating the new user problem in collaborative filtering by exploiting personality information. User Modeling and User-Adapted Interaction, 26(2–3), 221–255. DOI: 10.1007/s11257-016-9172-z
- 24Ferwerda, B., Tkalcic, M., & Schedl, M. (2017). Personality traits and music genres: What do people prefer to listen to? In Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization (UMAP 2017), pages 285–288. DOI: 10.1145/3079628.3079693
- 25Ferwerda, B., Yang, E., Schedl, M., & Tkalcic, M. (2015). Personality traits predict music taxonomy preferences. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA ’15, pages 2241–2246, New York, NY, USA.
Association for Computing Machinery . DOI: 10.1145/2702613.2732754 - 26Flexer, A., Schnitzer, D., Gasser, M., & Widmer, G. (2008). Playlist generation using start and end songs. In Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR 2008), pages 173–178.
- 27Fujihara, H., Goto, M., Kitahara, T., & Okuno, H. G. (2010). A modeling of singing voice robust to accompaniment sounds and its application to singer identification and vocal-timbre-similaritybased music information retrieval. IEEE Transactions on Audio, Speech, and Language Processing, 18(3), 638–648. DOI: 10.1109/TASL.2010.2041386
- 28Gasser, M., & Flexer, A. (2009). FM4 Soundpark: Audio-based music recommendation in everyday use. In Proceedings of the 6th Sound and Music Computing Conference (SMC 2009).
- 29Goto, M. (2007). Active music listening interfaces based on signal processing. In Proceedings of the 2007 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 1441–1444. DOI: 10.1109/ICASSP.2007.367351
- 30Goto, M. (2012).
Grand challenges in music information research . In Muller, M., Goto, M., & Schedl, M., editors, Dagstuhl Follow-Ups: Multimodal Music Processing, pages 217–225. Dagstuhl Publishing. - 31Goto, M., & Dannenberg, R. B. (2019). Music interfaces based on automatic music signal analysis: New ways to create and listen to music. IEEE Signal Processing Magazine, 36(1), 74–81. DOI: 10.1109/MSP.2018.2874360
- 32Goto, M., & Goto, T. (2009). Musicream: Integrated music-listening interface for active, flexible, and unexpected encounters with musical pieces. IPSJ (Information Processing Society of Japan) Journal, 50(12), 2923–2936. DOI: 10.2197/ipsjjip.17.292
- 33Govaerts, S., & Duval, E. (2009). A web-based approach to determine the origin of an artist. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR 2009).
- 34Hagen, A. N. (2015). The playlist experience: Personal playlists in music streaming services. Popular Music and Society, 38(5), 625–645. DOI: 10.1080/03007766.2015.1021174
- 35Hamasaki, M., Goto, M., & Nakano, T. (2015). Songrium: Browsing and listening environment for music content creation community. In Proceedings of the 12th Sound and Music Computing Conference (SMC 2015), pages 23–30.
- 36Hariri, N., Mobasher, B., & Burke, R. (2012). Context-aware music recommendation based on latent topic sequential patterns. In Proceedings of the 6th ACM Conference on Recommender Systems (RecSys 2012), pages 131–138. DOI: 10.1145/2365952.2365979
- 37Hauger, D., & Schedl, M. (2012). Exploring geospatial music listening patterns in microblog data. In Proceedings of the 10th International Workshop on Adaptive Multimedia Retrieval (AMR 2012).
- 38Herrera, P. (2018). MIRages: An account of music audio extractors, semantic description and contextawareness, in the three ages of MIR. PhD thesis, Universitat Pompeu Fabra, Barcelona, Spain.
- 39Hong, J.-W., & Curran, N. M. (2019). Artificial intelligence, artists, and art: Attitudes toward artwork produced by humans vs artificial intelligence. ACM Transactions on Multimedia Computing, Communications and Applications, 15(2s). DOI: 10.1145/3326337
- 40Hu, Y., Koren, Y., & Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM), pages 263–272. DOI: 10.1109/ICDM.2008.22
- 41Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, C., Dai, A., Hoffman, M., Dinculescu, M., & Eck, D. (2019). Music transformer: Generating music with long-term structure. In Proceedings of the 7th International Conference on Learning Representations (ICLR 2019).
- 42Huber, S., Schedl, M., & Knees, P. (2012). nepDroid: An intelligent mobile music player. In Proceedings of the ACM International Conference on Multimedia Retrieval (ACM ICMR 2012). DOI: 10.1145/2324796.2324862
- 43Jannach, D., Lerche, L., & Zanker, M. (2018).
Recommending based on implicit feedback . In Brusilovsky, P. and He, D., editors, Social Information Access: Systems and Technologies, pages 510–569. Springer International Publishing: Cham. DOI: 10.1007/978-3-319-90092-6_14 - 44Jin, Y., Cai, W., Chen, L., Htun, N. N., & Verbert, K. (2019). MusicBot: Evaluating critiquing-based music recommenders with conversational interaction. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM ’19, pages 951–960, New York, NY, USA.
Association for Computing Machinery . DOI: 10.1145/3357384.3357923 - 45Jin, Y., Tintarev, N., & Verbert, K. (2018). Effects of personal characteristics on music recommender systems with different levels of controllability. In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys 2018), pages 13–21. DOI: 10.1145/3240323.3240358
- 46John, O. P., Donahue, E. M., & Kentle, R. L. (1991). The Big Five Inventory — Versions 4a and 54. University of California, Berkeley, Institute of Personality and Social Research. DOI: 10.1037/t07550-000
- 47Julià, C. F., & Jordà, S. (2009). SongExplorer: A tabletop application for exploring large collections of songs. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR 2009).
- 48Kageyama, T., Mochizuki, K., & Takashima, Y. (1993). Melody retrieval with humming. In Proceedings of the 1993 International Computer Music Conference (ICMC 1993), pages 349–351.
- 49Kamehkhosh, I., Bonnin, G., & Jannach, D. (2020). Effects of recommendations on the playlist creation behavior of users. User Modeling and User-Adapted Interaction, 30, 285–322. DOI: 10.1007/s11257-019-09237-4
- 50Kim, J. H., Tomasik, B., & Turnbull, D. (2009). Using artist similarity to propagate semantic information. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR 2009).
- 51Kim, Y. E., Schmidt, E. M., & Emelle, L. (2008). MoodSwings: A collaborative game for music mood label collection. In Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR 2008), pages 231–236.
- 52Knees, P., & Schedl, M. (2013). A survey of music similarity and recommendation from music context data. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP), 10(1). DOI: 10.1145/2542205.2542206
- 53Knees, P., Schedl, M., Ferwerda, B., & Laplante, A. (2019).
User awareness in music recommender systems . In Augstein, M., Herder, E., & Wörndl, W., editors, Personalized Human-Computer Interaction, pages 223–252. DeGruyter: Berlin, Boston. DOI: 10.1515/9783110552485-009 - 54Knees, P., Schedl, M., Pohle, T., & Widmer, G. (2006). An innovative three-dimensional user interface for exploring music collections enriched with meta-information from the web. In Proceedings of the 14th ACM International Conference on Multimedia (ACM Multimedia 2006). DOI: 10.1145/1180639.1180652
- 55Lamere, P. (2008). Social tagging and music information retrieval. Journal of New Music Research, 37(2), 101–114. DOI: 10.1080/09298210802479284
- 56Lamere, P., & Eck, D. (2007). Using 3D visualizations to explore and discover music. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007).
- 57Law, E. L. M., von Ahn, L., Dannenberg, R. B., & Crawford, M. (2007). TagATune: A game for music and sound annotation. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007), pages 361–364.
- 58Lee, J. H., Kim, Y.-S., & Hubbles, C. (2016). A look at the cloud from both sides now: An analysis of cloud music service usage. In Proceedings of the 17th International Society for Music Information Retrieval Conference, pages 299–305, New York City, United States.
ISMIR . - 59Lehtiniemi, A., & Holm, J. (2013). Designing for music discovery: Evaluation and comparison of five music player prototypes. Journal of New Music Research, 42(3), 283–302. DOI: 10.1080/09298215.2013.796997
- 60Leitich, S., & Topf, M. (2007). Globe of Music – music library visualization using GeoSOM. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007).
- 61Liang, Y., & Willemsen, M. C. (2019). Personalized recommendations for music genre exploration. In Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization, UMAP ’19, pages 276–284, New York, NY, USA.
Association for Computing Machinery . DOI: 10.1145/3320435.3320455 - 62Lonsdale, A. J., & North, A. C. (2011). Why do we listen to music? a uses and gratifications analysis. British Journal of Psychology, 102(1), 108–134. DOI: 10.1348/000712610X506831
- 63Louie, R., Coenen, A., Huang, C. Z., Terry, M., & Cai, C. J. (2020). Novice-AI music co-creation via AI-steering tools for deep generative models. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, New York, NY, USA.
Association for Computing Machinery . DOI: 10.1145/3313831.3376739 - 64Lu, F., & Tintarev, N. (2018). A diversity adjusting strategy with personality for music recommendation. In Proceedings of the 5th Joint Workshop on Interfaces and Human Decision Making for Recommender Systems, co-located with ACM Conference on Recommender Systems (RecSys 2018).
- 65Lübbers, D., & Jarke, M. (2009). Adaptive multimodal exploration of music collections. In Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR 2009).
- 66Mai, J.-E. (2011). Folksonomies and the new order: Authority in the digital disorder. Knowledge Organization, 38(2), 114–122. DOI: 10.5771/0943-7444-2011-2-114
- 67Mandel, M. I., & Ellis, D. P. (2008). A web-based game for collecting music metadata. Journal of New Music Research, 37(2), 151–165. DOI: 10.1080/09298210802479300
- 68Mandel, M. I., Pascanu, R., Eck, D., Bengio, Y., Aiello, L. M., Schifanella, R., & Menczer, F. (2011). Contextual tag inference. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP), 7S(1), 32:1–32:18. DOI: 10.1145/2037676.2037689
- 69McFee, B., & Lanckriet, G. (2011). The natural language of playlists. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011).
- 70Millecamp, M., Htun, N. N., Jin, Y., & Verbert, K. (2018). Controlling Spotify recommendations: Effects of personal characteristics on music recommender user interfaces. In Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, UMAP ’18, pages 101–109, New York, NY, USA.
Association for Computing Machinery . DOI: 10.1145/3209219.3209223 - 71Mörchen, F., Ultsch, A., Nöcker, M., & Stamm, C. (2005). Databionic visualization of music collections according to perceptual distance. In Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR 2005).
- 72Müllensiefen, D., Gingras, B., Musil, J., & Stewart, L. (2014). The musicality of non-musicians: An index for assessing musical sophistication in the general population. PLOS ONE, 9(2), 1–23. DOI: 10.1371/journal.pone.0089642
- 73Neumayer, R., Dittenbach, M., & Rauber, A. (2005). PlaySOM and PocketSOMPlayer, alternative interfaces to large music collections. In Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR 2005).
- 74North, A. C., Hargreaves, D. J., & Hargreaves, J. J. (2004). Uses of music in everyday life. Music Perception, 22(1), 41–77. DOI: 10.1525/mp.2004.22.1.41
- 75Oramas, S., Ostuni, V. C., Noia, T. D., Serra, X., & Sciascio, E. D. (2016). Sound and music recommendation with knowledge graphs. ACM Transactions on Intelligent Systems and Technology, 8(2). DOI: 10.1145/2926718
- 76Pampalk, E., Dixon, S., & Widmer, G. (2004). Exploring music collections by browsing different views. Computer Music Journal, 28(2), 49–62. DOI: 10.1162/014892604323112248
- 77Pampalk, E., & Goto, M. (2006). MusicRainbow: A new user interface to discover artists using audiobased similarity and web-based labeling. In Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR 2006).
- 78Pampalk, E., & Goto, M. (2007). MusicSun: A new approach to artist recommendation. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007).
- 79Pampalk, E., Rauber, A., & Merkl, D. (2002). Content-based organization and visualization of music archives. In Proceedings of the 10th ACM International Conference on Multimedia (MM 2002), pages 570–579, Juan les Pins, France. DOI: 10.1145/641007.641121
- 80Pohle, T., Knees, P., Schedl, M., Pampalk, E., & Widmer, G. (2007). “Reinventing the Wheel”: A novel approach to music player interfaces. IEEE Transactions on Multimedia, 9(3), 567–575. DOI: 10.1109/TMM.2006.887991
- 81Prockup, M., Ehmann, A. F., Gouyon, F., Schmidt, E., Celma, Ò., & Kim, Y. E. (2015). Modeling genre with the Music Genome Project: Comparing human-labeled attributes and audio features. In Proceedings of the 16th International Society for Music Information Retrieval Conference (ISMIR), Málaga, Spain.
- 82Raimond, Y. (2008). A Distributed Music Information System. PhD thesis, Queen Mary University of London, UK.
- 83Raimond, Y., Abdallah, S., Sandler, M., & Giasson, F. (2007). The Music Ontology. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007), Vienna, Austria.
- 84Rentfrow, P. J., & Gosling, S. D. (2003). The do re mi’s of everyday life: The structure and personality correlates of music preferences. Journal of Personality and Social Psychology, 84(6), 1236–1256. DOI: 10.1037/0022-3514.84.6.1236
- 85Roberts, A., Engel, J., Oore, S., & Eck, D. (2018a). Learning latent representations of music to generate interactive musical palettes. In Proceedings of the 2018 ACM Workshop on Intelligent Music Interfaces for Listening and Creation (MILC 2018).
- 86Roberts, A., Engel, J., Raffel, C., Hawthorne, C., & Eck, D. (2018b). A hierarchical latent vector model for learning long-term structure in music. In Proceedings of the 35th International Conference on Machine Learning (ICML 2018), pages 4364–4373.
- 87Sasaki, S., Yoshii, K., Nakano, T., Goto, M., & Morisihima, S. (2014). LyricsRadar: A lyrics retrieval system based on latent topics of lyrics. In Proceedings of the 15th International Society for Music Information Retrieval Conference (ISMIR 2014), pages 585–590.
- 88Schedl, M., Gómez, E., Trent, E., Tkalčič, M., Eghbal-Zadeh, H., & Martorell, A. (2018). On the interrelation between listener characteristics and the perception of emotions in classical orchestra music. IEEE Transactions on Affective Computing, 9, 507–525. DOI: 10.1109/TAFFC.2017.2663421
- 89Schedl, M., Höglinger, C., & Knees, P. (2011a). Large-scale music exploration in hierarchically organized landscapes using prototypicality information. In Proceedings of the ACM International Conference on Multimedia Retrieval (ACM ICMR 2011). DOI: 10.1145/1991996.1992004
- 90Schedl, M., Knees, P., McFee, B., Bogdanov, D., & Kaminskas, M. (2015).
Music recommender systems . In Ricci, F., Rokach, L., Shapira, B., & Kantor, P. B., editors, Recommender Systems Handbook, pages 453–492. Springer, 2nd edition. DOI: 10.1007/978-1-4899-7637-6_13 - 91Schedl, M., Widmer, G., Knees, P., & Pohle, T. (2011b). A music information system automatically generated via web content mining techniques. Information Processing & Management, 47, 426–439. DOI: 10.1016/j.ipm.2010.09.002
- 92Schnitzer, D., Pohle, T., Knees, P., & Widmer, G. (2007). One-touch access to music on mobile devices. In Proceedings of the 6th International Conference on Mobile and Ubiquitous Multimedia (MUM 2007), pages 103–109. DOI: 10.1145/1329469.1329483
- 93Slaney, M. (2011). Web-scale multimedia analysis: Does content matter? IEEE MultiMedia, 18(2), 12–15. DOI: 10.1109/MMUL.2011.34
- 94Slaney, M., & White, W. (2007). Similarity based on rating data. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007), pages 479–484.
- 95Sordo, M. (2012). Semantic Annotation of Music Collections: A Computational Approach. PhD thesis, Universitat Pompeu Fabra, Barcelona, Spain.
- 96Stewart, R., Levy, M., & Sandler, M. (2008). 3D interactive environment for music collection navigation. In Proceedings of the 11th International Conference on Digital Audio Effects (DAFx-08).
- 97Stober, S., & Nürnberger, A. (2010). MusicGalaxy — an adaptive user-interface for exploratory music retrieval. In Proceedings of the 7th Sound and Music Computing Conference (SMC 2010), pages 23–30.
- 98Sturm, B. L. T., Iglesias, M., Ben-Tal, O., Miron, M., & Gómez, E. (2019). Artificial intelligence and music: Open questions of copyright law and engineering praxis. Arts, 8(3). DOI: 10.3390/arts8030115
- 99Surowiecki, J. (2004). The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How Collective Wisdom Shapes Business, Economies, Societies and Nations. Doubleday.
- 100Takahashi, T., Fukayama, S., & Goto, M. (2018). Instrudive: A music visualization system based on automatically recognized instrumentation. In Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR 2018), pages 561–568.
- 101Tsukuda, K., Ishida, K., & Goto, M. (2017). Lyric Jumper: A lyrics-based music exploratory web service by modeling lyrics generative process. In Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIR 2017), pages 544–551.
- 102Turnbull, D., Barrington, L., Torres, D., & Lanckriet, G. (2007a). Towards musical query-by-semanticdescription using the CAL500 data set. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR 2007). DOI: 10.1145/1277741.1277817
- 103Turnbull, D., Liu, R., Barrington, L., & Lanckriet, G. (2007b). A game-based approach for collecting semantic annotations of music. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007), Vienna, Austria.
- 104Tzanetakis, G., Essl, G., & Cook, P. (2001). Automatic musical genre classification of audio signals. In Proceedings of the 2nd International Symposium on Music Information Retrieval (ISMIR 2001), pages 205–210.
- 105Ultsch, A., & Siemon, H. P. (1990). Kohonen’s selforganizing feature maps for exploratory data analysis. In Proceedings of the International Neural Network Conference (INNC 1990), pages 305–308.
- 106Vad, B., Boland, D., Williamson, J., Murray-Smith, R., & Steffensen, P. B. (2015). Design and evaluation of a probabilistic music projection interface. In Proceedings of the 16th International Society for Music Information Retrieval Conference (ISMIR 2015), pages 134–140.
- 107van der Maaten, L., & Hinton, G. (2008). Visualizing high-dimensional data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605.
- 108van Gulik, R., & Vignoli, F. (2005). Visual playlist generation on the artist map. In Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR 2005), pages 520–523.
- 109Vembu, S., & Baumann, S. (2004). A self-organizing map based knowledge discovery for music recommendation systems. In Proceedings of the 2nd International Symposium on Computer Music Modeling and Retrieval (CMMR 2004). DOI: 10.1007/978-3-540-31807-1_9
- 110Wang, X., Rosenblum, D., & Wang, Y. (2012). Context-aware mobile music recommendation for daily activities. In Proceedings of the 20th ACM International Conference on Multimedia (ACM Multimedia 2012), pages 99–108. DOI: 10.1145/2393347.2393368
- 111Whitman, B., & Ellis, D. P. W. (2004). Automatic record reviews. In Proceedings of the 5th International Conference on Music Information Retrieval (ISMIR 2004), pages 470–477.
- 112Wold, E., Blum, T., Keislar, D., & Wheaton, J. (1996). Content-based classification, search, and retrieval of audio. IEEE MultiMedia, 3(3), 27–36. DOI: 10.1109/93.556537
- 113Wu, Y., & Takatsuka, M. (2006). Spherical selforganizing map using efficient indexed geodesic data structure. Neural Networks, 19(6–7), 900–910. DOI: 10.1016/j.neunet.2006.05.021
- 114Yakura, H., Nakano, T., & Goto, M. (2018). Focus-MusicRecommender: A system for recommending music to listen to while working. In Proceedings of the 23rd International Conference on Intelligent User Interfaces (ACM IUI 2018), pages 7–17. DOI: 10.1145/3172944.3172981
- 115Yoshii, K., Goto, M., Komatani, K., Ogata, T., & Okuno, H. G. (2007). Drumix: An audio player with functions of realtime drum-part rearrangement for active music listening. IPSJ (Information Processing Society of Japan) Journal, 48(3), 1229–1239. DOI: 10.2197/ipsjdc.3.134
- 116Zhou, C., Jin, Y., Zhang, K., Yuan, J., Li, S., & Wang, X. (2018).
MusicRoBot: Towards conversational context-aware music recommender system . In Pei, J., Manolopoulos, Y., Sadiq, S., & Li, J., editors, Database Systems for Advanced Applications, pages 817–820, Cham. Springer International Publishing. DOI: 10.1007/978-3-319-91458-9_55
