Have a personal or library account? Click to login
Not All Roads Lead to Rome: Pitch Representation and Model Architecture for Automatic Harmonic Analysis Cover

Not All Roads Lead to Rome: Pitch Representation and Model Architecture for Automatic Harmonic Analysis

Open Access
|May 2020

References

  1. 1Briot, J.-P., Hadjeres, G., & Pachet, F.-D. (2020). Deep Learning Techniques for Music Generation. Computational Synthesis and Creative Systems. Springer. DOI: 10.1007/978-3-319-70163-9
  2. 2Chen, T.-P., & Su, L. (2018). Functional harmony recognition of symbolic music data with multi-task recurrent neural networks. In International Society for Music Information Retrieval Conference (ISMIR 2018).
  3. 3Chen, T.-P., & Su, L. (2019). Harmony Transformer: Incorporating chord segmentation into harmony recognition. In International Society for Music Information Retrieval Conference (ISMIR 2019).
  4. 4Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078. DOI: 10.3115/v1/D14-1179
  5. 5Clendinning, J. P., & Marvin, E. W. (2016). The Musician’s Guide to Theory and Analysis. W.W. Norton, 3rd edition.
  6. 6Cohn, R. (1999). As wonderful as star clusters: Instruments for gazing at tonality in Schubert. 19th-Century Music, 22(3), 213232. DOI: 10.1525/ncm.1999.22.3.02a00020
  7. 7Cohn, R. (2012). Audacious Euphony: Chromatic Harmony and the Triad’s Second Nature. Oxford Studies in Music Theory. Oxford University Press, USA.
  8. 8Cross, I. (1997). Pitch schemata. In I. Deliège & J. Sloboda (Eds.), Perception and Cognition of Music, pages 357390. Psychology Press, Hove.
  9. 9Cuthbert, M. S., & Ariza, C. (2010). music21: A toolkit for computer-aided musicology and symbolic music data. In International Society for Music Information Retrieval Conference (ISMIR 2010), pages 637642.
  10. 10de Clercq, T., & Temperley, D. (2011). A corpus analysis of rock harmony. Popular Music, 30(1), 4770. DOI: 10.1017/S026114301000067X
  11. 11De Haas, W. B., Rohrmeier, M., Veltkamp, R. C., & Wiering, F. (2009). Modeling harmonic similarity using a generative grammar of tonal harmony. In International Society for Music Information Retrieval Conference (ISMIR 2009), pages 549554.
  12. 12Devaney, J., Arthur, C., Condit-Schultz, N., & Nisula, K. (2015). Theme and variation encodings with Roman numerals (TAVERN): A new data set for symbolic music analysis. In International Society for Music Information Retrieval Conference (ISMIR 2015).
  13. 13Duinker, B. (2019). Plateau loops and hybrid tonics in recent pop music. Music Theory Online, 25(4). DOI: 10.30535/mto.25.4.3
  14. 14Euler, L. (1739). Tentamen Novae Theoriae Musicae ex Certissimis Harmoniae Principiis Dilucide Expositae. Saint Petersburg Academy.
  15. 15Giraud, M., Groult, R., & Leguy, E. (2018). Dezrann, a web framework to share music analysis. In International Conference on Technologies for Music Notation and Representation (TENOR 2018), pages 104110.
  16. 16Hadjeres, G., Pachet, F., & Nielsen, F. (2017). Deep-Bach: A steerable model for Bach chorales generation. In Proceedings of the 34th International Conference on Machine Learning – Volume 70, ICML’17, page 13621371. JMLR.org.
  17. 17Harasim, D., Rohrmeier, M., & O’Donnell, T. J. (2018). A generalized parsing framework for generative models of harmonic syntax. In International Society for Music Information Retrieval Conference (ISMIR 2018), pages 152159.
  18. 18Heinichen, J. D. (1711). Neu erfundene und gründliche Anweisung – zu vollkommener Erlernung des General-Basses. Schiller, Hamburg.
  19. 19Holtzman, S. R. (1977). A program for key determination. Interface, 6, 2956. DOI: 10.1080/09298217708570231
  20. 20Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, C., Dai, A. M., Hoffman, M. D., Dinculescu, M., & Eck, D. (2018). Music Transformer. arXiv:1809.0428.
  21. 21Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2016). Densely connected convolutional networks. arXiv:1608.06993. DOI: 10.1109/CVPR.2017.243
  22. 22Illescas, P. R., Rizo, D., & Iñesta, J. M. (2007). Harmonic, melodic, and functional automatic analysis. In International Computer Music Conference (ICMC 2007), pages 165168.
  23. 23Ju, Y., Condit-Schultz, N., Arthur, C., & Fujinaga, I. (2017). Non-chord tone identification using deep neural networks. In International Workshop on Digital Libraries for Musicology (DLfM’17), pages 1316. DOI: 10.1145/3144749.3144753
  24. 24Ju, Y., Howes, S., McKay, C., Condit-Schultz, N., Calvo-Zaragoza, J., & Fujinaga, I. (2019). An interactive workflow for generating chord labels for homorhythmic music in symbolic formats. In International Society for Music Information Retrieval Conference (ISMIR 2019).
  25. 25Krumhansl, C. L., & Kessler, E. J. (1982). Tracing the dynamic changes in perceived tonal organisation in a spatial representation of musical keys. Psychological Review, 89(2), 334368. DOI: 10.1037/0033-295X.89.4.334
  26. 26Kröger, P., Passos, A., & Sampaio, M. (2008). Rameau: a system for automatic harmonic analysis. In International Computer Music Conference (ICMC 2008).
  27. 27Laitz, S. G. (2016). The Complete Musician: An Integrated Approach to Theory, Analysis, and Listening. Oxford University Press, 4th edition.
  28. 28Lerdahl, F., & Jackendoff, R. (1983). A Generative Theory of Tonal Music. MIT Press.
  29. 29Lewin, D. (1987). Generalized Musical Intervals and Transformations. Yale University Press.
  30. 30Liang, F. T., Gotham, M., Johnson, M., & Shotton, J. (2017). Automatic stylistic composition of Bach chorales with deep LSTM. In International Society for Music Information Retrieval Conference (ISMIR 2017), pages 449456.
  31. 31Madsen, S. T., & Widmer, G. (2007). Key-finding with interval profiles. In International Computer Music Conference (ICMC 2007).
  32. 32McFee, B., & Bello, J. P. (2017). Structured training for large-vocabulary chord recognition. In International Society for Music Information Retrieval Conference (ISMIR 2017).
  33. 33Nápoles López, N., Arthur, C., & Fujinaga, I. (2019). Key-finding based on a hidden Markov model and key profiles. In International Workshop on Digital Libraries for Musicology (DLfM’19). DOI: 10.1145/3358664.3358675
  34. 34Neuwirth, M., Harasim, D., Moss, F. C., & Rohrmeier, M. (2018). The annotated Beethoven corpus (ABC): A dataset of harmonic analyses of all Beethoven string quartets. Frontiers in Digital Humanities, 5. DOI: 10.3389/fdigh.2018.00016
  35. 35Oettingen, A. (1866). Harmoniesystem in dualer Entwicklung. Leipzig.
  36. 36Oord, A. V. D., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., & Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. arXiv:1609.03499.
  37. 37Oore, S., Simon, I., Dieleman, S., Eck, D., & Simonyan, K. (2018). This time with feeling: Learning expressive musical performance. Neural Computing and Applications. DOI: 10.1007/s00521-018-3758-9
  38. 38Paiement, J.-F., Eck, D., & Bengio, S. (2005). A probabilistic model for chord progressions. In International Conference on Music Information Retrieval (ISMIR 2005).
  39. 39Pardo, B., & Birmingham, W. P. (2002). Algorithms for chordal analysis. Computer Music Journal, 26(2), 2749. DOI: 10.1162/014892602760137167
  40. 40Robine, M., Rocher, T., & Hanna, P. (2008). Improvements of key-finding methods. In International Computer Music Conference (ICMC 2008).
  41. 41Rocher, T., Robine, M., Hanna, P., & Strandh, R. (2009). Dynamic chord analysis for symbolic music. In International Computer Music Conference (ICMC 2009).
  42. 42Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of Mathematics and Music, 5(1), 3553. DOI: 10.1080/17459737.2011.573676
  43. 43Sapp, C. S. (2005). Visual hierarchical key analysis. Computers in Entertainment, 3(4), 3. DOI: 10.1145/1095534.1095544
  44. 44Schenker, H. (1935). Der freie Satz. Universal Edition.
  45. 45Schoenberg, A. (1954 – op.posth, completed 1948). Structural Functions of Harmony. Williams and Norgate, London.
  46. 46Steedman, M., & Longuet-Higgins, H. C. (1971). On interpreting Bach. Machine Intelligence, 6.
  47. 47Temperley, D. (1997). An algorithm for harmonic analysis. Music Perception: An Interdisciplinary Journal, 15(1), 3168. DOI: 10.2307/40285738
  48. 48Temperley, D. (1999). What’s key for key? The Krumhansl-Schmuckler key-finding algorithm reconsidered. Music Perception, 17(1). DOI: 10.2307/40285812
  49. 49Tymoczko, D. (2011). A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice. Oxford University Press.
  50. 50Tymoczko, D., Gotham, M., Cuthbert, M. S., & Ariza, C. (2019). The Romantext Format: A flexible and standard method for representing Roman numeral analyses. In International Society for Music Information Retrieval Conference (ISMIR 2019).
  51. 51Yu, F., & Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions. arXiv:1511.07122.
DOI: https://doi.org/10.5334/tismir.45 | Journal eISSN: 2514-3298
Language: English
Submitted on: Dec 4, 2019
Accepted on: Mar 23, 2020
Published on: May 12, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Gianluca Micchi, Mark Gotham, Mathieu Giraud, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.