References
- 1Briot, J.-P., Hadjeres, G., & Pachet, F.-D. (2020). Deep Learning Techniques for Music Generation. Computational Synthesis and Creative Systems. Springer. DOI: 10.1007/978-3-319-70163-9
- 2Chen, T.-P., & Su, L. (2018). Functional harmony recognition of symbolic music data with multi-task recurrent neural networks. In International Society for Music Information Retrieval Conference (ISMIR 2018).
- 3Chen, T.-P., & Su, L. (2019). Harmony Transformer: Incorporating chord segmentation into harmony recognition. In International Society for Music Information Retrieval Conference (ISMIR 2019).
- 4Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078. DOI: 10.3115/v1/D14-1179
- 5Clendinning, J. P., & Marvin, E. W. (2016). The Musician’s Guide to Theory and Analysis. W.W. Norton, 3rd edition.
- 6Cohn, R. (1999). As wonderful as star clusters: Instruments for gazing at tonality in Schubert. 19th-Century Music, 22(3), 213–232. DOI: 10.1525/ncm.1999.22.3.02a00020
- 7Cohn, R. (2012). Audacious Euphony: Chromatic Harmony and the Triad’s Second Nature. Oxford Studies in Music Theory. Oxford University Press, USA.
- 8Cross, I. (1997).
Pitch schemata . In I. Deliège & J. Sloboda (Eds.), Perception and Cognition of Music, pages 357–390. Psychology Press, Hove. - 9Cuthbert, M. S., & Ariza, C. (2010). music21: A toolkit for computer-aided musicology and symbolic music data. In International Society for Music Information Retrieval Conference (ISMIR 2010), pages 637–642.
- 10de Clercq, T., & Temperley, D. (2011). A corpus analysis of rock harmony. Popular Music, 30(1), 47–70. DOI: 10.1017/S026114301000067X
- 11De Haas, W. B., Rohrmeier, M., Veltkamp, R. C., & Wiering, F. (2009). Modeling harmonic similarity using a generative grammar of tonal harmony. In International Society for Music Information Retrieval Conference (ISMIR 2009), pages 549–554.
- 12Devaney, J., Arthur, C., Condit-Schultz, N., & Nisula, K. (2015). Theme and variation encodings with Roman numerals (TAVERN): A new data set for symbolic music analysis. In International Society for Music Information Retrieval Conference (ISMIR 2015).
- 13Duinker, B. (2019). Plateau loops and hybrid tonics in recent pop music. Music Theory Online, 25(4). DOI: 10.30535/mto.25.4.3
- 14Euler, L. (1739). Tentamen Novae Theoriae Musicae ex Certissimis Harmoniae Principiis Dilucide Expositae. Saint Petersburg Academy.
- 15Giraud, M., Groult, R., & Leguy, E. (2018). Dezrann, a web framework to share music analysis. In International Conference on Technologies for Music Notation and Representation (TENOR 2018), pages 104–110.
- 16Hadjeres, G., Pachet, F., & Nielsen, F. (2017). Deep-Bach: A steerable model for Bach chorales generation. In Proceedings of the 34th International Conference on Machine Learning – Volume 70, ICML’17, page 1362–1371. JMLR.org.
- 17Harasim, D., Rohrmeier, M., & O’Donnell, T. J. (2018). A generalized parsing framework for generative models of harmonic syntax. In International Society for Music Information Retrieval Conference (ISMIR 2018), pages 152–159.
- 18Heinichen, J. D. (1711). Neu erfundene und gründliche Anweisung – zu vollkommener Erlernung des General-Basses. Schiller, Hamburg.
- 19Holtzman, S. R. (1977). A program for key determination. Interface, 6, 29–56. DOI: 10.1080/09298217708570231
- 20Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, C., Dai, A. M., Hoffman, M. D., Dinculescu, M., & Eck, D. (2018). Music Transformer. arXiv:1809.0428.
- 21Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2016). Densely connected convolutional networks. arXiv:1608.06993. DOI: 10.1109/CVPR.2017.243
- 22Illescas, P. R., Rizo, D., & Iñesta, J. M. (2007). Harmonic, melodic, and functional automatic analysis. In International Computer Music Conference (ICMC 2007), pages 165–168.
- 23Ju, Y., Condit-Schultz, N., Arthur, C., & Fujinaga, I. (2017). Non-chord tone identification using deep neural networks. In International Workshop on Digital Libraries for Musicology (DLfM’17), pages 13–16. DOI: 10.1145/3144749.3144753
- 24Ju, Y., Howes, S., McKay, C., Condit-Schultz, N., Calvo-Zaragoza, J., & Fujinaga, I. (2019). An interactive workflow for generating chord labels for homorhythmic music in symbolic formats. In International Society for Music Information Retrieval Conference (ISMIR 2019).
- 25Krumhansl, C. L., & Kessler, E. J. (1982). Tracing the dynamic changes in perceived tonal organisation in a spatial representation of musical keys. Psychological Review, 89(2), 334–368. DOI: 10.1037/0033-295X.89.4.334
- 26Kröger, P., Passos, A., & Sampaio, M. (2008). Rameau: a system for automatic harmonic analysis. In International Computer Music Conference (ICMC 2008).
- 27Laitz, S. G. (2016). The Complete Musician: An Integrated Approach to Theory, Analysis, and Listening. Oxford University Press, 4th edition.
- 28Lerdahl, F., & Jackendoff, R. (1983). A Generative Theory of Tonal Music. MIT Press.
- 29Lewin, D. (1987). Generalized Musical Intervals and Transformations. Yale University Press.
- 30Liang, F. T., Gotham, M., Johnson, M., & Shotton, J. (2017). Automatic stylistic composition of Bach chorales with deep LSTM. In International Society for Music Information Retrieval Conference (ISMIR 2017), pages 449–456.
- 31Madsen, S. T., & Widmer, G. (2007). Key-finding with interval profiles. In International Computer Music Conference (ICMC 2007).
- 32McFee, B., & Bello, J. P. (2017). Structured training for large-vocabulary chord recognition. In International Society for Music Information Retrieval Conference (ISMIR 2017).
- 33Nápoles López, N., Arthur, C., & Fujinaga, I. (2019). Key-finding based on a hidden Markov model and key profiles. In International Workshop on Digital Libraries for Musicology (DLfM’19). DOI: 10.1145/3358664.3358675
- 34Neuwirth, M., Harasim, D., Moss, F. C., & Rohrmeier, M. (2018). The annotated Beethoven corpus (ABC): A dataset of harmonic analyses of all Beethoven string quartets. Frontiers in Digital Humanities, 5. DOI: 10.3389/fdigh.2018.00016
- 35Oettingen, A. (1866). Harmoniesystem in dualer Entwicklung. Leipzig.
- 36Oord, A. V. D., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., & Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. arXiv:1609.03499.
- 37Oore, S., Simon, I., Dieleman, S., Eck, D., & Simonyan, K. (2018). This time with feeling: Learning expressive musical performance. Neural Computing and Applications. DOI: 10.1007/s00521-018-3758-9
- 38Paiement, J.-F., Eck, D., & Bengio, S. (2005). A probabilistic model for chord progressions. In International Conference on Music Information Retrieval (ISMIR 2005).
- 39Pardo, B., & Birmingham, W. P. (2002). Algorithms for chordal analysis. Computer Music Journal, 26(2), 27–49. DOI: 10.1162/014892602760137167
- 40Robine, M., Rocher, T., & Hanna, P. (2008). Improvements of key-finding methods. In International Computer Music Conference (ICMC 2008).
- 41Rocher, T., Robine, M., Hanna, P., & Strandh, R. (2009). Dynamic chord analysis for symbolic music. In International Computer Music Conference (ICMC 2009).
- 42Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of Mathematics and Music, 5(1), 35–53. DOI: 10.1080/17459737.2011.573676
- 43Sapp, C. S. (2005). Visual hierarchical key analysis. Computers in Entertainment, 3(4), 3. DOI: 10.1145/1095534.1095544
- 44Schenker, H. (1935). Der freie Satz. Universal Edition.
- 45Schoenberg, A. (1954 – op.posth, completed 1948). Structural Functions of Harmony. Williams and Norgate, London.
- 46Steedman, M., & Longuet-Higgins, H. C. (1971). On interpreting Bach. Machine Intelligence, 6.
- 47Temperley, D. (1997). An algorithm for harmonic analysis. Music Perception: An Interdisciplinary Journal, 15(1), 31–68. DOI: 10.2307/40285738
- 48Temperley, D. (1999). What’s key for key? The Krumhansl-Schmuckler key-finding algorithm reconsidered. Music Perception, 17(1). DOI: 10.2307/40285812
- 49Tymoczko, D. (2011). A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice. Oxford University Press.
- 50Tymoczko, D., Gotham, M., Cuthbert, M. S., & Ariza, C. (2019). The Romantext Format: A flexible and standard method for representing Roman numeral analyses. In International Society for Music Information Retrieval Conference (ISMIR 2019).
- 51Yu, F., & Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions. arXiv:1511.07122.
