Have a personal or library account? Click to login
Supervised Contrastive Models for Music Information Retrieval in Classical Persian Music Cover

Supervised Contrastive Models for Music Information Retrieval in Classical Persian Music

Open Access
|Jan 2026

References

  1. Abbası Layegh, M., Haghıpour, S., and Najafı Sarem, Y. (2014). Classification of the radif of mirza abdollah a canonic repertoire of persian music using svm method. Gazi University Journal of Science Part A: Engineering and Innovation, 1(4), 5766.
  2. Agostini, G., Longari, M., and Pollastri, E. (2003). Musical instrument timbres classification with spectral features. EURASIP Journal on Advances in Signal Processing, 2003(1), 943279.
  3. Azar, S. R., Ahmadi, A., Malekzadeh, S., and Samami, M. (2018). Instrument‑independent dastgah recognition of iranian classical music using azarnet. CoRR. abs/1812.07017.
  4. Baba Ali, B., Gorgan Mohammadi, A., and Faraji Dizaji, A. (2019). Nava: A persian traditional music database for the dastgah and instrument recognition tasks. Advanced Signal Processing, 3(2), 125134.
  5. Baba Ali, B. (2024). On the effectiveness of self‑supervised pre‑trained models for persian traditional music information retrieval. SSRN.
  6. Beigzadeh, B., and Belali Koochesfahani, M. (2016). Classification of iranian traditional musical modes (dastgäh) with artificial neural network. Journal of Theoretical and Applied Vibration and Acoustics, 2(2), 107118.
  7. Bhalke, D. G., Rao, C. B. R., and Bormane, D. S. (2016). Automatic musical instrument classification using fractional fourier transform based‑mfcc features and counter propagation neural network. Journal of Intelligent Information Systems, 46(3), 425446.
  8. Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. E. (2020). A simple framework for contrastive learning of visual representations. CoRR. abs/2002.05709.
  9. Ebrat, D., Didehvar, F., and Dadgar, M. (2022). Iranian Modal Music (Dastgah) detection using deep neural networks. arXiv preprint arXiv:2203.15335.
  10. Essid, S., Richard, G., and David, B. (2006). Hierarchical classification of musical instruments on solo recordings. In 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings , IEEE, Vol. 5, pp. VV.
  11. Farajzadeh, N., Sadeghzadeh, N., and Hashemzadeh, M. (2023). Pmg‑net: Persian music genre classification using deep neural networks. Entertainment Computing, 44, 100518.
  12. Farhat, H. (1990). Intervals and scales in contemporary Persian music. In Cambridge Studies in Ethnomusicology (pp. 718). Cambridge University Press.
  13. Ferraro, A., Favory, X., Drossos, K., Kim, Y., and Bogdanov, D. (2021). Enriched music representations with multiple cross‑modal contrastive learning. IEEE Signal Processing Letters, 28, 733737.
  14. Gong, X., Zhu, Y., Zhu, H., and Wei, H. (2021). Chmusic: A traditional chinese music dataset for evaluation of instrument recognition. In Proceedings of the 4th International Conference on Big Data Technologies (pp. 184189).
  15. Gourisaria, M. K., Agrawal, R., Sahni, M., and Singh, P. K. (2024). Comparative analysis of audio classification with mfcc and stft features using machine learning techniques. Discover Internet of Things, 4(1), 1.
  16. Guinot, J., Quinton, E., and Fazekas, G. (2024). Semi‑supervised contrastive learning of musical representations. arXiv preprint arXiv:2407.13840.
  17. Han, Y., Kim, J., and Lee, K. (2016). Deep convolutional neural networks for predominant instrument recognition in polyphonic music. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(1), 208221.
  18. Herrera, P., Peeters, G., and Dubnov, S. (2010). Automatic classification of musical instrument sounds. Journal of New Music Research, 32(1), 321.
  19. Heydarian, P., and Bainbridge, D. (2019). Dastgàh recognition in iranian music: Different features and optimized parameters. In Proceedings of the 6th International Conference on Digital Libraries for Musicology (DLfM), New York, NY, USA: Association for Computing Machinery, pp. 5357.
  20. Humphrey, E. J., Durand, S., and McFee, B. (2018). Openmic‑2018: An open data‑set for multiple instrument recognition. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR).
  21. Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C., and Krishnan, D. (2020). Supervised contrastive learning. CoRR. abs/2004.11362.
  22. Kumar, P., Rawat, P., and Chauhan, S. (2022). Contrastive self‑supervised learning: Review, progress, challenges and future research directions. International Journal of Multimedia Information Retrieval, 11(4), 461488.
  23. Lin, D. (2022). Contrastive Feature Learning for Audio Classification. Electrical Engineering and Computer Sciences.
  24. Madhusudhan, S. T., and Chowdhary, G. (2024). Deepsrgm–sequence classification and ranking in indian classical music with deep learning. arXiv preprint arXiv:2402.10168.
  25. Mousavi, S. M. H., Prasath, V. B. S., and Mousavi, S. M. H. (2019). Persian classical music instrument recognition (pcmir) using a novel persian music database. In 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 122130.
  26. Mürer, G. (2021). Music of a Thousand Years: A New History of Persian Musical Traditions. By Ann E. Lucas. Music and Letters, 101(3), 576578.
  27. Niu, Y. (2024). Automated classification of chinese traditional music genres using multi‑modal knowledge graph convolutional networks. Journal of Electrical Systems, 20(7), 29392951.
  28. Prabavathy, S., Rathikarani, V., and Dhanalakshmi, P. (2020). Classification of musical instruments using svm and knn. International Journal of Innovative Technology and Exploring Engineering, 9(7), 11861190.
  29. Reghunath, L. C., and Rajan, R. (2022). Transformer‑based ensemble method for multiple predominant instruments recognition in polyphonic music. EURASIP Journal on Audio, Speech, and Music Processing, 2022(1), 11.
  30. Saeed, A., Grangier, D., and Zeghidour, N. (2021). Contrastive learning of general‑purpose audio representations. In ICASSP 2021‑2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 38753879.
  31. Sharma, A. K., Panwar, A., and Chakrabarti, P. (2014). Analytical approach on indian classical raga measures by feature extraction with em and naive bayes. International Journal of Computer Applications, 107(6), 4146.
  32. Singh, P., Gupta, A., and Arora, V. (2024). Novel class discovery for open set raga classification. arXiv preprint arXiv:2411.18611.
  33. Solanki, A., and Pandey, S. (2022). Music instrument recognition using deep convolutional neural networks. International Journal of Information Technology, 14(3), 16591668.
  34. Spijkervet, J., and Burgoyne, J. A. (2021). Contrastive learning of musical representations. CoRR, abs/2103.09410.
  35. Yang, J., Gao, F., Yun, T., Zhu, T., Zhu, H., Zhou, R., and Wang, Y. (2025). A deep‑learning framework with multi‑feature fusion and attention mechanism for classification of chinese traditional instruments. Electronics, 14(14), 2805.
DOI: https://doi.org/10.5334/tismir.271 | Journal eISSN: 2514-3298
Language: English
Submitted on: Apr 26, 2025
|
Accepted on: Dec 6, 2025
|
Published on: Jan 7, 2026
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2026 Ali Ahmadi Katamjani, Seyed Abolghasem Mirroshandel, Mahdi Aminian, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.

Volume 9 (2026): Issue 1