References
- Amengual Garí, S. V., Lachenmayr, W., and Kob, M. (2015). Study on the influence of room acoustics on organ playing using room enhancement. Proceedings of the Institute of Acoustics, 37(1), 1–8.
- Armstrong, J. E. (2020). Beyond an acoustical understanding of the impact of environment on musical performance. (Identifier 99512931102346) [Doctoral dissertation, University of Surrey]. 10.15126/thesis.00853306.
- Auslander, P. (2009). Lucille meets Guitarbot: Instrumentality, agency, and technology in musical performance. Theatre Journal, 61(4), 603–616. 10.1007/978-981-10-2951-6_19.
- Balke, S., Berndt, A., and Müller, M. (2025). ChoraleBricks: A modular multitrack dataset for wind music research. Transactions for the International Society of Music Information Retrieval, 8(1), 39–54. 10.5334/tismir.252.
- Bandi, S. A., Lukácsi, T., Kemény, V., Vida, D., Nagy, S. I., Vas, B., and Révész, G. (2022). The HEXACO personality profile of musicians. Psychology of Music, 51(1), 107–118. 10.1177/03057356221087725.
- Barczyk‑Pawelec, K., Sipko, T., Demczuk‑Włodarczyk, E., and Boczar, A. (2012). Anterioposterior spinal curvatures and magnitude of asymmetry in the trunk in musicians playing the violin compared with nonmusicians. Journal of Manipulative and Physiological Therapeutics, 35(4), 319–326. 10.1016/j.jmpt.2012.04.013.
- Bazzica, A., Gemert, J., Liem, C., and Hanjalic, A. (2017). Vision‑based detection of acoustic timed events: A case study on clarinet note onsets. Computer Vision Image Understanding, 144, 188–204. 10.48550/arXiv.1706.09556.
- Benadon, F., and Zanette, D. (2015). A corpus analysis of rubato in Bach’s C Major Prelude, WTC I. Music Performance Research, 7, 1–26.
- Bishop, L., and Jensenius, A. R. (2020). Reliability of two IR motion capture systems in a music performance setting. Proceedings of the 17th Sound and Music Computing Conference, Torino.
- Bishop, L., Jensenius, A. R., and Laeng, B. (2021). Musical and bodily predictors of mental effort in string quartet music: An ecological pupillometry study of performers and listeners. Frontiers in Psychology, 12, 653021. 10.3389/fpsyg.2021.653021.
- Blanco‑Piñeiro, P., Díaz‑Pereira, M. P., and Martínez, A. (2017). Musicians, postural quality and musculoskeletal health: A literature’s review. Journal of Bodywork & Movement Therapies, 21, 157–172. 10.1016/j.jbmt.2016.06.018.
- Bolzinger, S., Warusfel, O., and Kahle, E. (1994). A study of the influence of room acoustics on piano performance. Journal de Physique IV, 4, C5‑617–C5‑620. 10.1051/jp4:19945132.
- Bresin, R., and Friberg, A. (1999). Synthesis and decoding of emotionally expressive music performance. IEEE SMC’99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics, 4, 317–322. 10.1109/ICSMC.1999.812420.
- Broude, R. (2012). Musical works, musical texts, and musical editions. Scholarly Editing: The Annual of the Association for Documentary Editing, 33, 1–29.
- Broughton, M., and Stevens, C. (2009). Music, movement and marimba: An investigation of the role of movement and gesture in communicating musical expression to an audience. Psychology of Music, 37(2), 137–153. 10.1177/0305735608094511.
- Buck, B., MacRitchie, J., and Bailey, N. J. (2013). The interpretive shaping of embodied musical structure in piano performance. Empirical Musicology Review, 8(2), 92–119. 10.18061/emr.v8i2.3929.
- Bugai, K. A., Mici, J., and Darrow, A. (2019). The Relationship between high‑level violin performers’ movement and evaluators’ perception of musicality. String Research Journal, 9, 23–33. 10.1177/1948499219851374.
- Burke, R., and Onsman, A. (Eds.). (2017). Perspectives on artistic research in music. Lexington Books. 10.5040/9781978725522.
- Burrows, D. (1987). Instrumentalities. The Journal of Musicology, 5(1), 117–125. 10.2307/763827.
- Campbell, D. M. (2014). Evaluating musical instruments. Physics Today, 67(4), 35–40. 10.1063/PT.3.2347.
- Cancino‑Chacón, C. E., and Pilov, I. (2024).
The Rach3 dataset: Towards data‑driven analysis of piano performance rehearsal . In S. Rudinac, A. Hanjalic, C. Liem, M. Worrying, B. P. Jónsson, B. Liu, and Y. Yamakata (Eds.), MultiMedia Modeling, MMM 2024. Lecture Notes in Computer Science (Vol. 14565, pp. 28–41). Springer. 10.1007/978-3-031-56435-2_3. - Cancino‑Chacón, C., Peter, S., Chowdhury, S., Aljanaki, A., and Widmer, G. (2020). On the characterization of expressive performance in classical music: First results of the Con Espressione game. Proceedings of the 21st Int. Society for Music Information Retrieval Conference. 10.48550/arXiv.2008.02194.
- Carmeli, E., Patish, H., and Coleman, R. (2003). The aging hand. The Journals of Gerontology: Series A, 58(2), M146–M152. 10.1093/gerona/58.2.M146.
- Castonguay, G., Bédard, S., Dubois, A., Lessard, E., Rivard, L., Rouly, G., and Boivin, A. (2025). Overcoming barriers to implementation of patient engagement in clinical trials: Feasibility testing of an embedded study. Research Involvement and Engagement, 11, 15. 10.1186/s40900-025-00689-0.
- Chang, A., Livingstone, S. R., Bosnyak, D. J., and Trainor, L. J. (2017). Body sway reflects leadership in joint music performance. Proceedings of the National Academy of Sciences, 114(21), E4134–E4141. 10.1073/pnas.1617657114.
- Chattin, L. B. (2019). The Big Five personality types and music performance anxiety in collegiate piano students [Unpublished doctoral dissertation]. University of South Carolina.
- Christodoulou, A. M., Lartillot, O., and Jensenius, A. R. (2024). Multimodal music datasets? Challenges and future goals in music processing. International Journal of Multimedia Information Retrieval, 13, 37. 10.1007/s13735-024-00344-6.
- Clark, T., Lisboa, T., and Williamon, A. (2014). An investigation into musicians’ thoughts and perceptions during performance. Research Studies in Music Education, 36(1), 19–37. 10.1177/1321103X14523531.
- Clarke, E. (1995).
Expression in performance: generativity, perception and semiosis . In J. Rink (Ed.), The Practice of performance: Studies in Musical Interpretation (pp. 21–54). Cambridge University Press. 10.1017/CBO9780511552366.003. - Cook, E. (2009).
Methods for analysing recordings . In N. Cook, E. Clarke, D. Leech‑Wilkinson, and J. Rink (Eds.), The Cambridge Companion to Recorded Music (pp. 221–245). Cambridge University Press, 10.1017/CCOL9780521865821.027. - Cook, N. (2014). Beyond reproduction: Semiotic perspectives on musical performance. Musikologija, 16, 15–30. 10.2298/MUZ1416015C.
- Çorlu, M., Muller, C., Desmet, F., and Leman, M. (2014). The consequences of additional cognitive load on performing musicians. Psychology of Music, 43(4), 495–510. 10.1177/0305735613519841.
- Crispin, D., and Östersjö, S. (2017).
Musical expression from conception to reception . In J. Rink, H. Gaunt, and A. Williamon (Eds.), Musicians in the Making: Pathways to Creative Performance (pp. 288–305). Oxford University Press. 10.1093/acprof:oso/9780199346677.003.0021. - Cuesta, H., Gómez, E., Martorell, A., and Loáiciga, F. (2018). Analysis of intonation in unison choir singing. In Proceedings of the International Conference of Music Perception and Cognition (ICMPC), Graz, Austria (pp. 125–130).
- D’Amato, V., Volta, E., Oneto, L., Volep, G., Camurri, A., and Anguita, D. (2021).
Accuracy and intrusiveness in data‑driven violin players skill levels prediction: MOCAP against MYO against KINECT . In G. Goos and J. Hartmanis (Eds.), Lecture notes in Computer Science (Vol. 12862, pp. 367–379). Springer. 10.1007/978-3-030-85099-9_30. - Dahl, S., and Friberg, A. (2007). Visual perception of expressiveness in musicians’ body movements. Music Perception, 24(5), 433–454. 10.1525/MP.2007.24.5.433.
- Davidson, J. W. (2012). Bodily movement and facial actions in expressive musical performance by solo and duo instrumentalists: Two distinctive case studies. Psychology of Music, 40(5), 595–633. 10.1177/0305735612449896.
- Davies, S. (2011).
Artistic expression and the hard case of pure music . In S. Davies (Ed.), Musical Understandings and Other Essays on the Philosophy of Music (pp. 7–20). Oxford University Press. 10.1093/acprof:oso/9780199608775.003.0002. - de Souza, J. (2017). Music at hand: Instruments, bodies, and cognition. Oxford University Press. 10.1093/acprof:oso/9780190271114.001.0001.
- Demos, A., Lisboa, T., and Chaffin, R. (2016). Flexibility of expressive timing in repeated musical performances. Frontiers in Psychology, 7, 1490. 10.3389/fpsyg.2016.01490.
- Dodson, A. (2009). Metrical dissonance and directed motion in Paderewski’s recordings of Chopin’s mazurkas. Journal of Music Theory, 53(1), 57–94. 10.1215/00222909-2009-021.
- Doğantan‑Dack, M. (2013).
Familiarity and musical performance . In M. Doğantan‑Dack (Ed.), Music and Familiarity (pp. 213–226). Routledge. 10.4324/9781315596600-17. - Doğantan‑Dack, M. (2015).
The role of the musical instrument in performance as research: The piano as a research tool . In M. Doğantan‑Dack (Ed.), Artistic Practice as Research in Music: Theory, Criticism, Practice (pp. 169–202). Routledge. 10.4324/9781315568041. - Doğantan‑Dack, M. (2021). Senses and sensibility: The performer’s intentions between the page and the stage. Rivista di Analisi e Teoria Musicale, 27(1), 23–67.
- Dong, H.‑W., Zhou, C., Berg‑Kirkpatrick, T., and McAuley, J. (2022). Deep performer: Score‑to‑audio music performance synthesis. In ICASSP 2022 ‑ 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore (pp. 951–955). 10.1109/ICASSP43922.2022.9747217.
- Drake, C. (1993). Perceptual and performed accents in musical sequences. Bulletin of the Psychonomic Society, 31(2), 107–110. 10.3758/BF03334153.
- Dromey, C., Holmes, S.O., Hopkin, J.A., and Tanner, K. (2015). The effects of emotional expression on vibrato. Journal of Voice, 29(2), 170–181. 10.1016/j.jvoice.2014.06.007.
- Duan, Z., and Pardo, B. (2012). Bach10 dataset: A versatile polyphonic music dataset.
- Duan, Z., Essid, S., Liem, C. C. S., Richard, G., and Sharma, G. (2019). Audiovisual analysis of music performances: Overview of an emerging field. Music Signal Processing, 36(1), 63–73. 10.1109/MSP.2018.2875511.
- Edwards, D., Dixon, S., and Benetos, E. (2023). PiJAMA: Piano Jazz with Automatic MIDI Annotations. Transactions of the International Society for Music Information Retrieval, 6(1), 89–102. 10.5334/tismir.162.
- Eley, N., Lavandier, C., Psychoyou, T., and Katz, B. F. G. (2024). Listener perception of changes in historically informed performance of solo baroque music due to room acoustics. Acta Acustica, 8(6), 1–15. 10.1051/aacus/2023069.
- Fabian, D., and Schubert, E. (2009). Baroque expressiveness and stylishness in three recordings of the D minor Sarabanda for solo violin (BWV 1004), by J. S. Bach. Music Performance Research, 3, 36–56. 10.1093/acprof:oso/9780199659647.003.0016.
- Flannery, M. B., and Woolhouse, M. H. (2021). Musical preference: Role of personality and music‑related acoustic features. Music & Science, 4, 1–14. 10.1177/20592043211014014.
- Foscarin, F., McLeod, A., Rigaux, P., Jacquemard, F., and Sakai, M. (2020). ASAP: A dataset of aligned scores and performances for piano transcription. Proceedings of the 21st International Society for Music Information Retrieval Conference (ISMIR) 2019, Montreal, Canada (pp. 534–541). 10.5281/zenodo.4245490.
- Foster, D., and Dixon, S. (2021). Filosax: A dataset of annotated jazz saxophone recordings. In 22nd International Society for Music Information Retrieval Conference.
- Gabrielsson, A., and Juslin, P. N. (1996). Emotional expression in music performance: between the performer’s intention and the listener’s experience. Psychology of Music, 24(1), 68–91. 10.1177/0305735696241007.
- Gan, Q., Wang, S., Wu, S., and Zhu, J. (2024). PianoMotion10M: Dataset and benchmark for hand motion generation in piano performance. The Thirteenth International Conference on Learning Representations. 10.48550/arXiv.2406.09326.
- Ghodousi, M., Pousson, J. E., Viocikas, A., Bernhofs, V., Pipinis, E., Tarailis, P., Burmistrova, L., Lin, Y.‑P., and Griškova‑Bulanova, I. (2022). EEG Connectivity during active emotional musical performance. Sensors, 22, 4064. 10.3390/s22114064.
- Gillick, J., Roberts, A., Engel, J., Eck, D., and Bamman, D. (2019). Learning to Groove with inverse sequence transformations. In Proceedings of the 36th International Conference on Machine Learning (ICML). 10.48550/arXiv.1905.06118.
- Ginsborg, J., Chaffin, R., and Demos, A. P. (2012). Different roles for prepared and spontaneous thoughts: A practice‑based study of musical performance from memory. Journal of Interdisciplinary Music Studies, 6(2), 201–231. 10.4407/jims.2014.02.005.
- Gjermunds, N., Brechan, I., Johnsen, S. Å. K., and Watten, R. G. (2020). Personality traits in musicians. Current Issues in Personality Psychology, 8(2), 100–107. 10.5114/cipp.2020.97314.
- Goebl, W. (1999). Numerisch‑klassifikatorische interpretations analyse mit dem ‘Bösendorfer Computerflügel’. [Unpublished master’s thesis]. Universität Wien.
- Goodchild, M., Gingras, B., and McAdams, S. (2016). Analysis, performance, and tension perception of an unmeasured prelude for harpsichord. Music Perception, 34(1), 1–20. 10.1525/mp.2016.34.1.1.
- Gosling, S. D., Rentfrow, P. J., and Swann, W. B.,
Jr . (2003). A very brief measure of the Big Five personality domains. Journal of Research in Personality, 37(6), 504–528. 10.1016/S0092-6566(03)00046-1. - Gotham, M., Bemman, B., and Vatolkin, I. (2025). Towards an ‘Everything Corpus’: A framework and guidelines for the curation of more comprehensive multimodal music data. Transactions of the International Society for Music Information Retrieval, 8(1), 70–92. 10.5334/tismir.228.
- Goto, M. (2004). Development of the RWC music database. In Proceedings of the 18th International Congress on Acoustics (ICA) 2004 (pp. I‑553–556).
- Goto, M., Hashiguchi, H., Nishimura, T., and Oka, R. (2002). RWC music database: Popular, classical, and jazz music databases. In Proceedings of the 3rd International Conference on Music Information Retrieval, International Society for Music Information Retrieval (ISMIR) 2002 (pp. 287–288).
- Hamilton, L. M., and Duke, R. A. (2020). Changes in perception accompany the development of music performance skills. Journal of Research in Music Education, 68(2), 175–192. 10.1177/0022429420920567.
- Hansen, N. C., Sadakata, M., and Pearce, M. (2016). Nonlinear changes in the rhythm of European art music: Quantitative support for historical musicology. Music Perception, 33(4), 414–431. 10.1525/MP.2016.33.4.414.
- Harley, N. (2019). Abstract representation of music: A type‑based knowledge representation framework. [Unpublished doctoral dissertation]. Queen Mary University of London.
- Harley, N., Wiggins, G. A., and Sandler, M. (2015). An ontology for abstract, hierarchical music representation. In Extended abstracts for the Late‑Breaking Demo Session of the 16th International Society for Music Information Retrieval Conference.
- Hashida, M., Matsui, T., and Katayose, H. (2008). A new music database describing deviation information of performance expressions. In International Conference of Music Information Retrieval (ISMIR) (pp. 489–494).
- Hashida, M., Nakamura, E., and Katayose, H. (2018). CrestMusePEDB 2nd edition: Music performance database with phrase information. In 15th Sound and Music Computing Conference. 10.5281/zenodo.1422502.
- Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C.‑Z. A., Dieleman, S., Elsen, E., Engel, J., and Eck, D. (2019). Enabling factorized piano music modeling and generation with the MAESTRO dataset. 10.48550/arXiv.1810.12247.
- Hentschel, J., Neuwirth, M., and Rohrmeier, M. (2021). The Annotated Mozart sonatas: Score, harmony, and cadence. Transactions of the International Society for Music Information Retrieval (TISMIR), 6(1), 67–80. 10.5334/tismir.63.
- Héroux, I. (2017). Creative processes in the shaping of a musical interpretation: A study of nine professional musicians. Frontiers in Psychology, 9, 665. 10.3389/fpsyg.2018.00665.
- Héroux, I., and Fortier, M.‑S. (2014). Expérimentation d’une nouvelle méthodologie pour expliciter le processus de création d’une interprétation musicale. Les Cahiers de la société québécoise de recherche en musique, 15(1), 67–79. 10.7202/1033796ar.
- Hidaka, T., Nishihara, N., and Beranek, L. L. (2000). Relation of acoustical parameters with and without audiences in concert halls and a simple method for simulating the occupied state. Journal of the Acoustic Society of America, 109, 1028–1042. 10.1121/1.1340649.
- Higuchi, M. K. K., Fornari, J., Del Ben, C. M., Graeff, F. G., and Leite, J. P. (2011). Reciprocal modulation of cognitive and emotional aspects in pianistic performances. PLOS ONE, 6(9), e24437. 10.1371/journal.pone.0024437.
- Holmes, P., and Holmes, C. (2013). The performer’s experience: A case for using qualitative (phenomenological) methodologies in music performance research. Musicae Scientiae, 17(1), 72–85. 10.1177/1029864912467633.
- Hu, P., and Widmer, G. (2023). The Batik‑plays‑Mozart Corpus‑ linking performance to score to musicological annotations. In Proceedings of the 24th International Society for Music Information Retrieval Conference. 10.48550/arXiv.2309.02399.
- Huang, C.‑K., Neylon, C., Montgomery, L., Hosking, R., Diprose, J. P., Hancock, R. N., and Wilson, K. (2024). Open access research outputs receive more diverse citations. Scientometrics, 129, 825–845. 10.1007/s11192-023-04894-0.
- Huang, Y.‑F., Liang, J.‑I., Wei, I.‑C., and Su, L. (2020). Joint analysis of mode and playing technique in guqin performance with machine learning. In Proceedings of the 21st International Society for Music Information Retrieval Conference. 10.5281/zenodo.4245377.
- Istók, E., Brattico, E., Jacobsen, T., Krohn, K., Müller, M., and Tervaniemi, M. (2009). Aesthetic responses to music: A questionnaire study. Musicae Scientiae, 13(2), 183–206. 10.1177/102986490901300201.
- İzci, M., Pelin, İ. C., and Şençelikel, T. (2023). A comparison of the anthropometric measurements, flexibility, and muscle strength of the hands of conservatory piano students and non‑musicians. Eurasian Journal of Anthropology, 13(2), 26–38.
- Jensenius, A. R. (2021). Best versus good enough practices for open music research. Empirical Musicology Review, 16(1), 5–15. 10.18061/emr.v16i1.7646.
- Jerkert, J. (2004).
Musical articulation in the organ . In Paper presented at the Joint Baltic‑Nordic Acoustics Meeting, Mariehamn, Finland. - Jin, Y., Qiu, Z., Shi, Y., Sun, S., Wang, C., Pan, D., Zhao, J., Liang, Z., Wang, Y., Li, X., Yu, F., Yu, T., and Dai, Q. (2024). Audio matters too! Enhancing markerless motion capture with audio signals for string performance capture. ACM Transactions on Graphics, 43(4), 90. 10.48550/arXiv.2405.04963.
- John, O. P., Donahue, E. M., and Kentle, R. L. (1991). Big Five Inventory (BFI) [Database record]. APA PsycTests. 10.1037/t07550-000.
- Juslin, P. N. (2013). What does music express? Basic emotions and beyond. Frontiers in Psychology, 4, 596. 10.3389/fpsyg.2013.00596.
- Kalkandjiev, Z. S., and Weinzierl, S. (2015). The influence of room acoustics on solo music performance: An experimental study. Acta Acustica united with Acustica, 99(3), 433–441. 10.3813/AAA.918624.
- Kawase, S. (2014). Importance of communication cues in music performance according to performers and audience. International Journal of Psychological Studies, 6(2), 49–64. 10.5539/ijps.v6n2p49.
- Kemp, A. E. (1996). The musical temperament: Psychology and personality of musicians. Oxford University Press. 10.1093/acprof:oso/9780198523628.001.0001.
- Klompstra, L., Strömberg, A., Jaarsma, T., and Hendriks, J. M. (2025). Challenges and strategies for effective recruitment and retention of participants in clinical research studies. European Journal of Cardiovascular Nursing, 24(5), 808–812. 10.1093/eurjcn/zvae158.
- Knapp, R. B., Jaimovich, J., and Coghlan, N. (2009). Measurement of motion and emotion during musical performance. In Proceedings of the 3rd International Conference on Affective Computing and Intelligent Interaction (ACII 2009). IEEE (pp. 1–5). 10.1109/ACII.2009.5349469.
- Kokotsaki, D., and Davidson, J. W. (2010). Investigating musical performance anxiety among music college singing students: A quantitative analysis. Music Education Research, 5(1), 45–59. 10.1080/14613800307103.
- Kong, Q., Li, B., Chen, J., and Wang, Y. (2022). GiantMIDI‑Piano: A Large‑ scale MIDI dataset for classical piano music. Transactions of the International Society for Music Information Retrieval (TISMIR), 5(1), 87–98. 10.5334/tismir.80.
- Kopiez, R., Wolf, A., and Platz, F. (2017). Small influence of performing from memory on audience evaluation. Empirical Musicology Review, 12(1‑2), 2–14. 10.18061/EMR.V12I1-2.5553.
- Kosta, K., Bandtlow, O. F., and Chew, E. (2018). MazurkaBL: Score‑aligned loudness, beat, expressive markings data for 2000 Chopin Mazurka recordings. In Proceedings of the 4th International Conference on Technologies for Music Notation and Representation (TENOR) 2018 (pp. 85–94). 10.5281/zenodo.1290763.
- Larson, S. (2012). Musical forces: Motion, metaphor, and meaning in music. Indiana University Press. 10.2979/6363.0.
- Latulipe, C., Carroll, E. A., and Lottridge, D. M. (2011). Love, hate, arousal and engagement: Exploring audience responses to performing arts. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1845–1854). 10.1145/1978942.1979200.
- Lee, K. J. M., Ens, J., Adkins, S., Sarmento, P., Barthet, M., and Pasquier, P. (2025). The GigaMIDI dataset with features for expressive music performance detection. Transactions of the International Society for Music Information Retrieval, 8(1), 1–19. 10.5334/tismir.203.
- Leech‑Wilkinson, D. (2008). Understanding the sources: Performance and recordings. The changing sound of music: Approaches to studying recorded musical performances.
- Lerdahl, F., and Jackendoff, R. (1977). Toward a formal theory of tonal music. Journal of Music Theory, 21(1), 111–171.
- Lerdahl, F., and Jackendoff, R. (1983). An overview of hierarchical structure in music. Music Perception, 1(2), 229–252. 10.2307/40285257.
- Li, B., Liu, X., Dinesh, K., Duan, Z., and Sharma, G. (2018). creating a musical performance dataset for multimodal music analysis: Challenges, insights, and applications. IEEE Transactions on Multimedia, 21(2), 522–535. 10.48550/arXiv.1612.08727.
- Liebman, E., Ornoy, E., and Chor, B. (2012). A phylogenetic approach to music performance analysis. Journal of New Music Research, 41(2), 215–242. 10.1080/09298215.2012.668194.
- Lisboa, T., Chaffin, R., and Logan, T. (2011).
A self‑study of practice: Words versus action in music problem solving . In Proceedings of the International Symposium on Performance Science (pp. 518–523). European Association of Conservatoires (AEC). - Luck, G., and Ansani, A. (2024). The aging musician: Evidence of a downward trend in song tempo as a function of artist age. 10.1101/2024.06.29.601154.
- MacRitchie, J., Buck, B., and Bailey, N. J. (2013). Inferring musical structure through bodily gestures. Musicae Scientiae, 17(1), 86–108. 10.1177/1029864912467632.
- Maestre, E., Papiotis, P., Marchini, M., Llimona, Q., Mayor, O., and Pérez, A. (2017). Enriched multimodal representations of music performances: Online access and visualization. IEEE MultiMedia, 24(1), 24–34. 10.1109/MMUL.2017.3.
- Marchini, M., Ramirez, R., Papiotis, P., and Maestre, E. (2014). The sense of ensemble: a machine learning approach to expressive performance modelling in string quartets. Journal of New Music Research, 43(3), 303–317. 10.1080/09298215.2014.922999.
- McAdams, S. (2013).
Musical timbre perception . In D. Deutsch (Ed.), The Psychology of Music (3rd ed., pp. 35–67). Elsevier Academic Press. 10.1016/B978-0-12-381460-9.00002-X. - McDermott, J., Gifford, T., Bouwer, A., and Wagy, M. (2013).
Should music interaction be easy? In S. Holland, K. Wilkie, P. Mulholland, and A. Seago (Eds.), Music and human‑computer interaction (pp. 29–48). Springer. 10.1007/978-1-4471-2990-5_2. - McGowan, R., and Levitt, A. (2011). A comparison of rhythm in English dialects and music. Music Perception, 28(3), 307–314. 10.1525/mp.2011.28.3.307.
- Meissner, H., Timmers, R., and Pitts, S. E. (2021). ‘Just notes’: Young musicians’ perspectives on learning expressive performance. Research Studies in Music Education, 43(3), 451–464. 10.1177/1321103X19899171.
- Moreno‑Gutiérrez, J. Á., de Rojas Leal, C., López‑González, M. V., Chao‑Écija, A., and Dawid‑Milner, M. S. (2023). Impact of music performance anxiety on cardiovascular blood pressure responses, autonomic tone and baroreceptor sensitivity to a western classical music piano‑concert. Frontiers in Neuroscience, 17, 1213117. 10.3389/fnins.2023.1213117.
- Moss, F. C., and Neuwirth, M. (2021). FAIR, open, linked: Introducing the special issue on open science in musicology. Empirical Musicology Review, 16(1), 1–4. 10.18061/emr.v16i1.8246.
- Müller, M., Konz, V., Bogler, W., and Arifi‑Müller, V. (2011). Saarland music data (SMD). In Late‑Breaking and Demo Session of the International Conference on Music Information Retrieval (ISMIR).
- Müller, M., Konz, V., Clausen, M., Ewert, S., and Fremerey, C. (2010). A multimodal way of experiencing and exploring music. Interdisciplinary Science Reviews, 35(2), 138–153. 10.1179/030801810X12723585301110.
- Nakai, S., Kunnari, S., Turk, A., Suomi, K., and Ylitalo, R. (2009). Utterance‑final lengthening and quantity in Northern Finnish. Journal of Phonetics, 37(1), 29–45. 10.1016/j.wocn.2008.08.002.
- Nijs, L., Lesaffre, M., and Leman, M. (2013).
The musical instrument as a natural extension of the musician . In M. Castellengo, H. Genevois, and J.‑M. Bardez (Eds.), Music and its Instruments (pp. 467–484). Editions Delatour France. - Nowoświat, A. (2022). Impact of temperature and relative humidity on reverberation time in a reverberation room. Buildings, 2022(12), 1282. 10.3390/buildings12081282.
- Nusseck, M., Czedik‑Eysenberg, I., Spahn, C., and Reuter, C. (2022). Associations between ancillary body movements and acoustic parameters of pitch, dynamics and timbre in clarinet playing. Frontiers in Psychology, 13, 885970. 10.3389/fpsyg.2022.885970.
- O’Neill, S., and Sloboda, J. (2017).
Responding to performers: Listeners and audiences . In A. Williamon and J. W. Davidson (Eds.), Musicians in the Making: Pathways to Creative Performance (pp. 322–340). Oxford University Press. 10.1093/acprof:oso/9780199346677.003.0023. - Okan, H., and Usta, B. (2021). Conservatory students’ music performance anxiety and educational expectations: A qualitative study. Asian Journal of Education and Training, 7(4), 250–259. 10.20448/journal.522.2021.74.250.259.
- Osborne, M. S., and Kenny, D. T. (2005). Development and validation of a music performance anxiety inventory for gifted adolescent musicians. Anxiety Disorders, 19, 725–751. 10.1016/j.janxdis.2004.09.002.
- Palmer, C. (1989). Mapping musical thought to musical performance. Journal of Experimental Psychology: Human Perception and Performance, 15(2), 331–346. 10.1037/0096-1523.15.2.331.
- Palmer, C. (1997). Music performance. Annual Review of Psychology, 48, 115–138. 10.1146/annurev.psych.48.1.115.
- Papiotis, P. (2015). A computational approach to studying interdependence in string quartet performance. [Doctoral dissertation]. Universitat Pompeu Fabra.
- Park, J., Kim, J., Park, J. M., Choi, A., Li, W.‑S., Park, J., and HWANG, S.‑W. (2024). Piano performance evaluation dataset with multilevel perceptual features. Scientific Reports, 14, 23002. 10.1038/s41598-024-73810-0.
- Perez‑Carrillo, A., Arcos, J. L., and Wanderley, M. (2016).
Estimation of Guitar fingering and plucking controls based on multimodal analysis of motion, audio and musical score . In R. Kronland‑Martinet, M. Aramaki, and S. Ystad (Eds.), Music, Mind, and Embodiment. CMMR 2015. Lecture Notes in Computer Science (Vol. 9617, pp. 69–87). Springer. 10.1007/978-3-319-46282-0_5. - Persson, R. S., and Robson, C. (1995). The limits of experimentation: On researching music and musical settings. Psychology of Music, 23(1), 39–47. 10.1177/030573569523100.
- Persson, R.S., Pratt, G., and Robson, C. (1992). Motivational and influential components of musical performance: A qualitative analysis. European Journal of High Ability, 3(2), 206–217. 10.1080/0937445920030209.
- Picaud, M. (2022). Framing performance and fusion: how music venues’ materiality and intermediaries shape music scenes. American Journal of Cultural Sociology, 10(2), 285–315. 10.1057/s41290-022-00151-8.
- Rafee, S. R. M., Fazekas, G., and Wiggins, G. (2021). Performer identification from symbolic representation of music using statistical models. International Computer Music Conference. 10.48550/arXiv.2108.02576.
- Ramoneda, P., Lee, M., Jeong, D., Valero‑Mas, J. J., and Serra, X. (2025). Can audio reveal music performance difficulty? Insights from the piano syllabus dataset. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 33, 1129–1141. 10.1109/TASLPRO.2025.3539018.
- Rector, M. (2021). Historical trends in expressive timing strategies: Chopin’s Etude, Op. 25 no. 1. Op. Empirical Musicology Review, 15(3‑4), 176–201. 10.18061/emr.v15i3-4.7338.
- Repp, B. (1992). Diversity and commonality in music performance: An analysis of timing microstructure in Schumann’s ‘Träumerei’. The Journal of the Acoustical Society of America, 92(5), 2546–2568. 10.1121/1.404425.
- Repp, B. (1996). The dynamics of expressive piano performance: Schumann’s ‘‘Träumerei’’ revisited. The Journal of the Acoustical Society of America, 100(1), 641–650. 10.1121/1.415889.
- Rey, L., Guyon, A. J. A. A., Hildebrandt, H., Güsewell, A., Horsch, A., Nater, U. M., Jamieson, J. P., and Gomez, P. (2025). Demand‑resource evaluations and post‑performance thoughts in classical music students: How they are linked and influenced by music performance anxiety, audience, and time. Frontiers in Psychology, 16, 1579759. 10.3389/fpsyg.2025.1579759.
- Riley, X., and Dixon, S. (2023). Filobass: A Dataset and corpus based study of jazz basslines. In Proceedings of the 24th International Society for Music Information Retrieval Conference, ISMIR 2023. 10.48550/arXiv.2311.02023.
- Riley, X., Guo, Z., Edwards, D., and Dixon, S. (2024). GAPS: A large and diverse classical guitar dataset and benchmark transcription model. International Society for Music Information Retrieval 2024. 10.48550/arXiv.2408.08653.
- Rink, J. (2015). The (F)utility of performance analysis. In M. Doğantan‑Dack (Ed.), Artistic Practice as Research in Music: Theory, Criticism, Practice (pp. 127–148). 10.4324/9781315568041.
- Rosenzweig, S., Scherbaum, F., Shugliashvili, D., Arifi‑ Müller, V., and Müller, M. (2020). Erkomaishvili Dataset: A curated corpus of traditional Georgian vocal music for computational musicology. Transactions of the International Society for Music Information Retrieval, 3(1), 31–41. 10.5334/tismir.44.
- Rothfarb, L. (2002).
Energetics . In T. Christensen (Ed.), The Cambridge History of Western Music Theory. The Cambridge History of Music (pp. 927–955). Cambridge University Press. 10.1017/CHOL9780521623711.032. - Rumsey, D. (2013).
The speed of Welte’s organ rolls . In C. E. Hänggi and K. Köpp (Eds.), Symposium: ‘Recording the Soul of Music’, Welte‑Künstlerrollen für Orgel und Klavier als authentische Interpretationsdokumente (pp. 68–83). - Sakai, N., Liu, M. C., Su, F.‑C., Bishop, A. T., and An, K.‑N. (2006). Hand span and digital motion on the keyboard: Concerns of overuse syndrome in musicians. Journal of Hand Surgery, 31(5), 830–835. 10.1016/j.jhsa.2006.02.009.
- Sandler, M., De Roure, D., Benford, S., and Page, K. (2019).
Semantic web technology for new experiences throughout the music production‑consumption chain . In 2019 International Workshop on Multilayer Music Representation and Processing (MMRP) 2009 (pp. 49–55). 10.1109/MMRP.2019.00017. - Sapp, C. (2007). Craig Sapp. Comparative analysis of multiple musical performances. In Proceedings of the International Conference on Music Information Retrieval (ISMIR) (pp. 497–500).
- Sarasúa, Á. (2017). Musical Interaction Based on the Conductor Metaphor. [Doctoral dissertation]. Universitat Pompeu Fabra.
- Sarasúa, Á., Caramiaux, B., Tanaka, A., and Ortiz, M. (2017). Datasets for the analysis of expressive musical gestures. In Proceedings of the 4th International Conference on Movement Computing (MOCO) 2017 13 (pp. 1–4). 10.1145/3077981.3078032.
- Schick, S. (1994). Developing an interpretive context: learning Brian Ferneyhough’s bone alphabet. Perspectives of New Music, 32(1), 132–153. 10.2307/833159.
- Shi, Z., Sapp, C. S., Arul, K., McBride, J., and Smith III, J. O. (2019). SUPRA: Digitizing the stanford university piano roll archive. In Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR) 2019, Delft, Netherlands (pp. 517–523).
- Siefart, F., Strunk, J., Danielsen, S., Hartmann, I., Pakendorf, B., Wichmann, S., Witzlack‑Makarevich, A., Himmelmann, N. P., and Bickel, B. (2021). The extent and degree of utterance‑final word lengthening in spontaneous speech from 10 languages. Linguistics Vanguard, 7(1), 20190063. 10.1515/lingvan-2019-0063.
- Spiro, N., Gold, N., and Rink, J. (2010). The form of performance: analyzing pattern distribution in select recordings of Chopin’s Mazurka Op. 24 No. 2. Musicae Scientiae, 14(2), 23–55. 10.1177/102986491001400202.
- Spiro, N., Gold, N., and Rink, J. (2016).
Musical motives in performance: A study of absolute timings . In J. B. L. Smith, E. Chew, and G. Assayag (Eds.), Mathemusical Conversations (pp. 109–128). Springer. 10.1142/9789813140103_0007. - Springer, D. G., and Sorenson, R. A. (2024). Evaluations of solo piano performances: The role of performing with and without a musical score. Psychology of Music, 53(5), 695–711. 10.1177/03057356241259119.
- Stamatatos, E., and Widmer, G. (2005). Automatic identification of music performers with learning ensembles. Artificial Intelligence, 165(1), 37–56. 10.1016/j.artint.2005.01.007.
- Thibaud, P., Giraud, M., and Teytaut, Y. (2025). When voices interleave: Timing deviations in six performances of Telemann’s Fantasias for solo flute. In Proceedings of the 26th International Society for Music Information Retrieval Conference.
- Thickstun, J., Harchaoui, Z., and Kakade, S. (2017). Learning features of music from scratch. In Proceedings of the 5th International Conference on Learning Representations (ICLR). 10.48550/arXiv.1611.09827.
- Thompson, M. R., and Luck, G. (2011). Exploring relationships between pianists’ body movements, their expressive intentions, and structural elements of the music. Musicae Scientiae, 16(1), 19–40. 10.1177/1029864911423457.
- Thompson, R. L., and Larson, R. (1995). Social context and the subjective experience of different types of rock music. Journal of Youth and Adolescence, 24(6), 731–744. 10.1007/BF01536954.
- Thoresen, L. (2022). Energy in music: An inventory of observations and ideas. Music Theory and Analysis, 9(1), 71–101. 10.11116/MTA.9.1.4.
- Todd, N. (1985). A model of expressive timing in tonal music. Music Perception, 3(1), 33–57. 10.2307/40285321.
- Toiviainen, P., Luck, G., and Thompson, M. R. (2009). Embodied metre: Hierarchical eigenmodes in spontaneous movement to music. Music Perception, 28(1), 59–70. 10.1525/mp.2010.28.1.59.
- Tomczak, M., Li, M. S., and Di Luca, M. (2023).
Virtuoso strings: A dataset of string ensemble recordings and onset annotations for timing analysis . In Extended Abstracts for the Late‑Breaking Demo Session of the 24th Int. Society for Music Information Retrieval Conference. - Tsay, C. (2013). Sight over sound in the judgment of music performance. Proceedings of the National Academy of Sciences of the United States of America, 110(36), 14580–14585. 10.1073/pnas.1221454110.
- Tschacher, W., Greenwood, S., Egermann, H., Wald‑Fuhrmann, M., Czepiel, A., Tröndle, M., and Meier, D. (2023). Physiological synchrony in audiences of live concerts. Psychology of Aesthetics, Creativity, and the Arts, 17(2), 152–162. 10.1037/aca0000431.
- Turchet, L., and Pauwels, J. (2021). Music emotion recognition: Intention of composers‑performers versus perception of musicians, non‑musicians, and listening machines. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 30, 305–316. 10.1109/TASLP.2021.3138709.
- Turchet, L., O’Sullivan, B., Ortner, R., and Guger, C. (2024). Emotion recognition of playing musicians from EEG, ECG, and acoustic signals. IEEE Transactions on Human‑Machine Systems, 54(5), 619–629. 10.1109/THMS.2024.3430327.
- Ueno, K., Kato, K., and Kawai, K. (2010). Effect of room acoustics on musicians’ performance. Part I: experimental investigation with a conceptual model. Acta Acustica united with Acustica, 96(3), 505–515. 10.3813/AAA.918303.
- Urbaniak, O., and Mitchell, H. F. (2021). How to dress to impress: The effect of concert dress type on perceptions of female classical pianists. Psychology of Music, 50(2), 422–438. 10.1177/03057356211001120.
- van Zijl, A. G. W., and Sloboda, J. (2010). Performers’ experienced emotions in the construction of expressive musical performance: An exploratory investigation. Psychology of Music, 39(2), 196–219. 10.1177/0305735610373563.
- van Zijl, A. G. W., Toiviainen, P., Lartillot, O., and Luck, G. (2014). The sound of emotion: The Effect of performers’ experienced emotions on auditory performance characteristics. Music Perception, 32(1), 33–50. 10.1525/mp.2014.32.1.33.
- Vieillard, S., Pertz, I., Gosselin, N., Khalifa, S., Gagnon, L., and Bouchard, B. (2008). Happy, sad, scary and peaceful musical excerpts for research on emotions. Cognition & Emotion, 22(4), 720–752. 10.1080/02699930701503567.
- Volpe, G., Kolykhalova, K., Volta, E., Ghisio, S., Waddell, G., Alborno, P., Piana, S., Canepa, C., and Ramirez‑Melendez, R. (2017). A multimodal corpus for technology‑enhanced learning of violin playing. CHItaly ’17: Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter, 25, 1–5. 10.1145/3125571.312558.
- Vuoskoski, J. K., Gatti, E., Spence, C., and Clarke, E. F. (2016). Do visual cues intensify the emotional responses evoked by musical performance? A psychophysiological investigation. Psychomusicology: Music, Mind, and Brain, 26(2), 179–188. 10.1037/pmu0000142.
- Waddell, G., and Williamon, A. (2017). Eye of the beholder: Stage entrance behavior and facial expression affect continuous quality ratings in music performance. Frontiers in Psychology, 8, 513. 10.3389/fpsyg.2017.00513.
- Wang, C., Benetos, E., Lostanlen, V., and Chew, E. (2022). Adaptive scattering transforms for playing technique recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP), 30, 1407–1421. 10.1109/TASLP.2022.3156785.
- Wang, S., Ewert, S., and Dixon, S. (2016). Robust and efficient joint alignment of multiple musical performances. IEEE/ACM Transactions on Audio Speech and Language Processing, 24(11), 2132–2145. 10.1109/TASLP.2016.2598318.
- Weiß, C., and Müller, M. (2024). From music scores to audio recordings: Deep pitch‑class representations for measuring tonal structures. ACM Journal on Computing and Cultural Heritage, 17(3), 1–19. 10.1145/3659103.
- Weiß, C., Arifi‑Müller, V., Krause, M., Zalkow, F., Klauk, S., Kleinertz, R., and Müller, M. (2023). Wagner ring dataset: A complex opera scenario for music processing and computational musicology. Transactions of the International Society for Music Information Retrieval, 6(1), 135–149. 10.5334/tismir.161.
- Weiß, C., Frank, Z., Arifi‑Müller, V., Meinhard, M., Koops, H.V., Volk, A., and Grohganz, G. H. (2021). Schubert winterreise dataset: A multimodal scenario for music analysis. Journal on Computing and Cultural Heritage, 14(2), 1–18. 10.1145/3429743.
- Widmer, G. (1996). Learning expressive performance: The structure‐level approach. Journal of New Music Research, 25(2), 179–205. 10.1080/09298219608570702.
- Williamon, A. (1999). The value of performing from memory. Psychology of Music, 27, 84–95. 10.1177/0305735699271008.
- Winters, R. M., Gururani, S., and Lurch, A. (2016). Automatic practice logging: Introduction, dataset & preliminary study. Proceedings of the International Conference on Music Information Retrieval (ISMIR), New York (pp. 598–604). 10.5281/zenodo.1416223.
- Xi, Q., Bittner, R., Pauwels, J., Ye, X., and Bello, J. P. (2018). Guitarset: A dataset for guitar transcription. In 19th International Society for Music Information Retrieval Conference, Paris.
- Yang, S., Reed, C. N., Chew, E., and Barthet, M. (2021). Examining emotion perception agreement in live music performance. IEEE Transactions on Affective Computing, 14(2), 1442–1460. 10.1109/TAFFC.2021.3093787.
- Yoshie, M., Kudo, K., Murakoshi, T., and Ohtsuki, T. (2009). Music performance anxiety in skilled pianists: Effects of social‑evaluative performance situation on subjective, autonomic, and electromyographic reactions. Experimental Brain Research, 199(2), 117–126. 10.1007/s00221-009-1979-y.
- Zeitler, J., Weiß, C., Arifi‑Müller, V., and Müller, M. (2024). BPSD: A coherent multi‑version dataset for analyzing the first movements of Beethoven’s piano sonatas. Transactions for the International Society of Music Information Retrieval, 7(1), 195–212. 10.5334/tismir.196.
- Zhang, H., Tang, J., Rafee, S. R. M., Dixon, S., and Fazekas, G. (2022). ATEPP: A Dataset of automatically transcribed expressive piano performance. In Proceedings of the 23nd International Society for Music Information Retrieval Conference 2022, India, Bengaluru (pp. 446–453).
- Zhang, Y., Zhou, Z., Li, X., Yu, F., and Sun, M. (2023). CCOM‑HuQin: An annotated multimodal Chinese fiddle performance dataset. Transactions of the International Society for Music Information Retrieval, 6(1), 60–74. 10.5334/tismir.146.
