Have a personal or library account? Click to login

References

  1. Allegraud, P., Bigo, L., Feisthauer, L., Giraud, M., Groult, R., Leguy, E., and Levé, F. (2019). Learning sonata form structure on Mozart’s string quartets. Transactions of the International Society for Music Information Retrieval, 2(1): 8296.
  2. Balke, S., Dittmar, C., Abeßer, J., Frieler, K., Pfleiderer, M., and Müller, M. (2018). Bridging the gap: Enriching YouTube videos with jazz music annotations. Frontiers in Digital Humanities, 5: 1.
  3. Berndt, A. (2021). The music performance markup format and ecosystem. In International Society for Music Information Retrieval Conference (ISMIR 2021) (pp. 5057).
  4. Borsan, V. N., Giraud, M., Groult, R., and Lecroq, T. (2023). Adding context to content improves pattern matching: A study on Slovenian folksongs. In International Society for Music Information Retrieval Conference (ISMIR 2023) (pp. 474481).
  5. Borsan, V. N., Kovačič, M., Giraud, M., Pisk, M., Pesek, M., and Marolt, M. (2025). Introducing the digitised dataset of Slovenian Folk Ballads. Ethnomusicology Forum, in press.
  6. Cancino‑Chacón, C., Peter, S. D., Karystinaios, E., Foscarin, F., Grachten, M., and Widmer, G. (2023). Partitura: A python package for symbolic music processing. In Music Encoding Conference (MEC 2022).
  7. Couturier, L., Bigo, L., and Levé, F. (2022). A dataset of texture annotations in Mozart piano sonatas. In International Society for Music Information Retrieval Conference (ISMIR 2022).
  8. Cuthbert, M. S., and Ariza, C. (2010). music21: A toolkit for computer‑aided musicology and symbolic music data. In International Society for Music Information Retrieval Conference (ISMIR 2010) (pp. 637642).
  9. de Berardinis, J., Carriero, V. A., Meroño‑Peñuela, A., Poltronieri, A., and Presutti, V. (2022). The music meta ontology: A flexible semantic model for the interoperability of music metadata. In International Society for Music Information Retrieval Conference (ISMIR 2023) (pp. 859867).
  10. de Berardinis, J., Meroño‑Peñuela, A., Poltronieri, A., and Presutti, V. (2023). Choco: A chord corpus and a data transformation workflow for musical harmony knowledge graphs. Scientific Data, 10(1): 641.
  11. Devaney, J. (2020). Using note‑level music encodings to facilitate interdisciplinary research on human engagement with music. Transactions of the International Society for Music Information Retrieval, 3(1).
  12. Dorfer, M., Henkel, F., and Widmer, G. (2018). Learning to listen, read, and follow: Score following as a reinforcement learning game. In International Society for Music Information Retrieval Conference (ISMIR 2018).
  13. Ewert, S., Müller, M., and Grosche, P. (2009). High resolution audio synchronization using chroma onset features. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2009) (pp. 18691872).
  14. Fremerey, C., Müller, M., and Clausen, M. (2010). Handling repeats and jumps in score‑performance synchronization. In International Society for Music Information Retrieval Conference (ISMIR 2010) (pp. 243248).
  15. Fyfe, L., Bedoya, D., and Chew, E. (2022). Annotation and analysis of recorded piano performances on the web. Journal of the Audio Engineering Society, 70(11).
  16. Garczynski, L., Giraud, M., Leguy, E., and Rigaux, P. (2022). Modeling and editing cross‑modal synchronization on a label web canvas. In Music Encoding Conference (MEC 2022) (pp. 6171).
  17. Giraud, M., Groult, R., Leguy, E., and Levé, F. (2015). Computational fugue analysis. Computer Music Journal, 39(2).
  18. Gotham, M., Hentschel, J., Couturier, L., Dykeaylen, N., Rohrmeier, M., and Giraud, M. (2023a). The ‘Measure Map’: An inter‑operable standard for aligning symbolic music. In Digital Libraries for Musicology (DLfM 2023) (pp. 9199).
  19. Gotham, M., and Ireland, M. (2019). Taking form: A representation standard, conversion code, and example corpus for recording, visualizing, and studying analyses of musical form. In International Society for Music Information Retrieval Conference (ISMIR 2019) (pp. 693699).
  20. Gotham, M., Micchi, G., López, N. N., and Sailor, M. (2023b). When in Rome: A meta‑corpus of functional harmony. Transactions of the International Society for Music Information Retrieval, 6(1): 150166.
  21. Gotham, M. R. H., and Jonas, P. (2021). The OpenScore Lieder corpus. In Music Encoding Conference (MEC 2021) (pp. 131136).
  22. Guillotel‑Nothmann, C., Rigaux, P., Coüasnon, B. B., Giraud, M., and Lemaitre, A. (2024). The Collab‑Score project – from optical recognition to multimodal music sources. In Workshop on Reading Music Systems (WoRMS 2024) (pp. 3337).
  23. Hentschel, J., Neuwirth, M., and Rohrmeier, M. (2021). The annotated Mozart sonatas: Score, harmony, and cadence. Transactions of the International Society for Music Information Retrieval, 4(1): 6780.
  24. Le, D.‑V.‑T., Bigo, L., Herremans, D., and Keller, M. (2025). Natural language processing methods for symbolic music generation and information retrieval: A survey. ACM Computing Surveys.
  25. Le, D.‑V.‑T., Giraud, M., Levé, F., and Maccarini, F. (2022). A corpus describing orchestral texture in first movements of classical and early‑romantic symphonies. In Digital Libraries for Musicology (DLfM 2022) (pp. 2235).
  26. Lewis, D., Shibata, E., Saccomano, M., Rosendahl, L., Kepper, J., Hankinson, A., Siegert, C., and Page, K. (2022). A model for annotating musical versions and arrangements across multiple documents and media. In Digital Libraries for Musicology (DLfM 2022) (pp. 1018).
  27. Mazzoni, D., and Dannenberg, R. B. (2002). A fast data structure for disk‑based audio editing. Computer Music Journal, 26(2): 6276.
  28. McFee, B., Kim, J. W., Cartwright, M., Salamon, J., Bittner, R. M., and Bello, J. P. (2019). Opensource practices for music signal processing research: Recommendations for transparent, sustainable, and reproducible audio research. IEEE Signal Processing Magazine, 36(1): 128137.
  29. McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., and Nieto, O. (2015). librosa: Audio and music signal analysis in python. In Python in Science Conference (SciPy 2015) (pp. 1824).
  30. Moss, F. C., and Neuwirth, M. (2021). FAIR, open, linked: Introducing the special issue on open science in musicology. Empirical Musicology Review, 16(1): 14.
  31. Müller, M., Özer, Y., Krause, M., Prätzlich, T., and Driedger, J. (2021). Sync Toolbox: A Python package for efficient, robust, and accurate music synchronization. Journal of Open Source Software (JOSS), 6(64): 3434:14.
  32. Müller, M., Arzt, A., Balke, S., Dorfer, M., and Widmer, G. (2019). Cross‑modal music retrieval and applications: An overview of key methodologies. IEEE Signal Processing Magazine, 36(1): 5262.
  33. Nattiez, J.‑J. (1975). Fondements d’une sémiologie de la musique. Dufrenne.
  34. Panteli, M., Benetos, E., and Dixon, S. (2018). A review of manual and computational approaches for the study of world music corpora. Journal of New Music Research, 47(2): 176189.
  35. Peeters, G., and Fort, K. (2012). Towards a (better) definition of annotated MIR corpora. In International Society for Music Information Retrieval Conference (ISMIR 2012) (pp. 2530).
  36. Pfleiderer, M., Frieler, K., Abeßer, J., Zaddach, W.‑G., and Burkhart, B. (Eds.). (2017). Inside the Jazzomat – New Perspectives for Jazz Research. Schott Campus.
  37. Poltronieri, A., and Gangemi, A. (2022). The HaMSE ontology: Using semantic technologies to support music representation interoperability and musicological analysis. In Multisensory Data and Knowledge (MDK 2021) (pp. 6276).
  38. Porter, A., Sordo, M., and Serra, X. (2013). Dunya: A system for browsing audio music collections exploiting cultural context. In International Society for Music Information Retrieval Conference (ISMIR 2013) (pp. 101106).
  39. Pugin, L., Zitellini, R., and Roland, P. (2014). Verovio: A library for engraving MEI music notation into SVG. In International Society for Music Information Retrieval Conference (ISMIR 2014) (pp. 107112).
  40. Rosenzweig, S., Scherbaum, F., Shugliashvili, D., Arifi‑Müller, V., and Müller, M. (2020). Erkomaishvili dataset: A curated corpus of traditional georgian vocal music for computational musicology. Transactions of the International Society for Music Information Retrieval, 3(1): 3141.
  41. Sauda, A., Giraud, M., and Leguy, E. (2022). Soutenir en classe l’écoute active, l’autonomie et l’échange en analyse musicale avec la plateforme web Dezrann. In Sound and Music Computing / Journées d’Informatique Musicale (SMC 2022 / JIM 2022) (pp. 617623).
  42. Savage, P. E. (2022). An overview of cross‑cultural music corpus studies. In The Oxford Handbook of Music and Corpus Studies. Oxford University Press.
  43. Schöning, K., de Valk, R., Weigl, D. M., Kyriazis, I., Janjuš, O., Burghoff, H., and Steindl, C. (2025). A collaborative digital edition of 15th‑ and 16th‑century german lute tablature: The E‑LAUTE project. Journal of New Music Research, 116.
  44. Serra, X. (2014). Creating research corpora for the computational study of music: The case of the CompMusic project. In AES International Conference on Semantic Audio.
  45. Shi, Z., Sapp, C., Arul, K., McBride, J., and Smith III, J. O. (2019). SUPRA: Digitizing the stanford university piano roll archive. In International Society for Music Information Retrieval Conference (ISMIR 2019) (pp. 517523).
  46. Shugliashvili, D. (2014). Georgian Church Hymns (Shemokmedi School): Transcriptions of Artem Erkomaishvili Recordings (2nd ed.).
  47. Shuker, R. (2013). Understanding Popular Music Culture. Routledge.
  48. Solie, R. A. (Ed.). (1993). Musicology and Difference: Gender and Sexuality in Music Scholarship. University of California Press.
  49. Thickstun, J., Brennan, J., and Verma, H. (2020). Rethinking evaluation methodology for audio‑toscore alignment. arXiv preprint arXiv:2009.14374.
  50. Thomas, V., Fremerey, C., Müller, M., and Clausen, M. (2012). Linking sheet music and audio – challenges and new approaches. In Multimodal Music Processing (Vol. 3, pp. 122).
  51. Wang, L., Zhao, Z., Liu, H., Pang, J., Qin, Y., and Wu, Q. (2024). A review of intelligent music generation systems. Neural Computing and Applications, 36(12): 63816401.
  52. Weigl, D. M., Crawford, T., Gkiokas, A., Goebl, W., Gómez, E., Guti, N., Liem, C. C. S., and Santos, P. (2021a). FAIR interconnection and enrichment of public‑domain music resources on the web. Empirical Musicology Review, 16(1): 1633.
  53. Weigl, D. M., Goebl, W., Baker, D. J., Crawford, T., Zubani, F., Gkiokas, A., Gutierrez, N. F., Porter, A., and Santos, P. (2021b). Notes on the music: A social data infrastructure for music annotation. In Digital Libraries for Musicology (DLfM 2021) (pp. 2331).
  54. Weigl, D. M., VanderHart, C., Rammler, D., Pescoller, M., and Goebl, W. (2023). Listen here! a web‑native digital musicology environment for machine‑assisted close listening. In Digital Libraries for Musicology (DLfM 2023) (pp. 109118).
  55. Weiß, C., Zalkow, F., Arifi‑Müller, V., Müller, M., Koops, H. V., Volk, A., and Grohganz, H. G. (2021). Schubert Winterreise Dataset: A multimodal scenario for music analysis. Journal on Computing and Cultural Heritage, 14(2).
  56. Werner, N., Balke, S., Stöter, F.‑R., Müller, M., and Edler, B. (2017). trackswitch.js: A versatile webbased audio player for presenting scientific results. In Web Audio Conference (WAC 2017).
  57. Winget, M. A. (2008). Annotations on musical scores by performing musicians. Journal of the Association for Information Science and Technology, 59(12): 18781897.
  58. Zalkow, F., Rosenzweig, S., Graulich, J., Dietz, L., Lemnaouar, E. M., and Müller, M. (2018). A web‑based interface for score following and track switching in choral music. In International Society for Music Information Retrieval Conference (ISMIR 2018). late‑breaking demo.
DOI: https://doi.org/10.5334/tismir.212 | Journal eISSN: 2514-3298
Language: English
Submitted on: Aug 30, 2024
Accepted on: May 12, 2025
Published on: May 30, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Charles Ballester, Baptiste Bacot, Louis Bigo, Vanessa Nina Borsan, Louis Couturier, Ken Déguernel, Quentin Dinel, Laurent Feisthauer, Klaus Frieler, Mark Gotham, Richard Groult, Johannes Hentschel, Alexandre d'Hooge, Dinh-Viet-Toan Le, Florence Levé, Francesco Maccarini, Ivana Maričić, Gianluca Micchi, Meinard Müller, Alexandros Stamatiadis, Tom Taffin, Patrice Thibaud, Christof Weiß, Rui Yang, Emmanuel Leguy, Mathieu Giraud, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.