Have a personal or library account? Click to login
The GigaMIDI Dataset with Features for Expressive Music Performance Detection Cover

The GigaMIDI Dataset with Features for Expressive Music Performance Detection

Open Access
|Feb 2025

References

  1. Adkins, S., Sarmento, P., and Barthet, M. (2023, April). LooperGP: A loopable sequence model for live coding performance using GuitarPro tablature. In Proceedings of International Conference on Computational Intelligence in Music, Sound, Art and Design (Part of EvoStar), Brno, Czech Republic.
  2. Arcos, J. L., de Mántaras, R. L., and Serra, X. (1998). Saxex: A case‑based reasoning system for generating expressive musical performances*. Journal of New Music Research, 27(3), 194210. 10.1080/09298219808570746
  3. Barthet, M., Depalle, P., Kronland‑Martinet, R., and Ystad, S. (2010). Acoustical correlates of timbre and expressiveness in clarinet performance. Music Perception, 28(2), 135154. 10.1525/mp.2010.28.2.135
  4. Bellini, P., Bruno, I., and Nesi, P. (2005). Automatic formatting of music sheets through MILLA rule‑based language and engine. Journal of New Music Research, 34(3), 237257. 10.1080/09298210500236051
  5. Berndt, A., and Hähnel, T. (2010, September). Modelling musical dynamics. In Proceedings of the Audio Mostly Conference on Interaction with Sound, Piteå, Sweden.
  6. Born, G. (2020). Diversifying MIR: Knowledge and real‑world challenges, and new interdisciplinary futures. Transactions of the International Society for Music Information Retrieval, 3(1), 193204. 10.5334/tismir.58
  7. Bosch, J. J., Marxer, R., and Gómez, E. (2016). Evaluation and combination of pitch estimation methods for melody extraction in symphonic classical music. Journal of New Music Research, 45(2), 101117. 10.1080/09298215.2016.1182191
  8. Boulanger‑Lewandowski, N., Bengio, Y., and Vincent, P. (2012, June). Modeling temporal dependencies in high‑dimensional sequences: Application to polyphonic music generation and transcription. In Proceedings of the International Conference on Machine Learning, Edinburgh, Scotland.
  9. Briot, J.‑P. (2021). From artificial neural networks to deep learning for music generation: history, concepts and trends. Journal of Neural Computing and Applications, 33, 3965. 10.1007/s00521-020-05399-0
  10. Briot, J.‑P., and Pachet, F. (2020). Deep learning for music generation: Challenges and directions. Journal of Neural Computing and Applications, 32, 981993. 10.1007/s00521-018-3813-6
  11. Brunner, G., Konrad, A., Wang, Y., and Wattenhofer, R. (2018, September). MIDI‑VAE: Modeling dynamics and instrumentation of music with applications to style transfer. In Proceedings of the International Society for Music Information Retrieval Conference, Paris, France.
  12. Callender, L., Hawthorne, C., and Engel, J. (2020). Improving perceptual quality of drum transcription with the expanded Groove MIDI dataset. https://magenta.tensorflow.org/oaf-drums
  13. Cancino‑Chacón, C. E., Grachten, M., Goebl, W., and Widmer, G. (2018). Computational models of expressive music performance: A comprehensive and critical review. Journal of Frontiers in Digital Humanities, 5, Article 25. 10.3389/fdigh.2018.00025
  14. Cancino‑Chacón, C., Peter, S. D., Karystinaios, E., Foscarin, F., Grachten, M., and Widmer, G. (2022). Partitura: A Python package for symbolic music processing. In Proceedings of the Music Encoding Conference, Halifax, Canada.
  15. Choi, E., Chung, Y., Lee, S., Jeon, J., Kwon, T., and Nam, J. (2022, December). YM2413‑MDB: A multi‑instrumental fm video game music dataset with emotion annotations. In Proceedings of the International Society for Music Information Retrieval Conference, Bengaluru, India.
  16. Collins, T., and Barthet, M. (2023, November). Expressor: A transformer model for expressive MIDI performance. In Proceedings of the 16th International Symposium on Computer Music Multidisciplinary Research (CMMR), Tokyo, Japan.
  17. Crauwels, K. (2016). Musicmap. https://musicmap.info/
  18. Crawford, T., and Lewis, R. (2016). Review: Music encoding initiative. Journal of the American Musicological Society, 69(1), 273285. 10.1525/jams.2016.69.1.273
  19. Crestel, L., Esling, P., Heng, L., and McAdams, S. (2018, September). A database linking piano and orchestral MIDI scores with application to automatic projective orchestration. In Proceedings of the International Society for Music Information Retrieval Conference, Paris, France.
  20. Cros Vila, L., and Sturm, B. L. T. (2023, August). Statistical evaluation of ABC‑formatted music at the levels of items and corpora. In Proceedings of AI Music Creativity (AIMC), Brighton, UK.
  21. Cuthbert, M. S., and Ariza, C. (2010, August). music21: A toolkit for computer‑aided musicology and symbolic music data. In Proceedings of of the International Society for Music Information Retrieval Conference, Utrecht, Netherlands.
  22. Dannenberg, R. B. (2006, November). The interpretation of MIDI velocity. In Proceedings of the International Computer Music Conference, New Orleans, United States.
  23. Dieleman, S., Van Den Oord, A., and Simonyan, K. (2018, December). The challenge of realistic music generation: Modelling raw audio at scale. In Proceedings of Conference on Neural Information Processing Systems, Montreal, Canada.
  24. Donahue, C., Mao, H. H., and McAuley, J. (2018, September). The NES music database: A multi‑instrumental dataset with expressive performance attributes. In Proceedings of the International Society for Music Information Retrieval Conference, Paris, France.
  25. Edwards, D., Dixon, S., Benetos, E., Maezawa, A., and Kusaka, Y. (2024). A data‑driven analysis of robust automatic piano transcription. IEEE Signal Processing Letters, 31, 681685. 10.1109/LSP.2024.3363646
  26. Ens, J., and Pasquier, P. (2020, October). MMM: Exploring conditional multi‑track music generation with the transformer. In Proceedings of the International Society for Music Information Retrieval Conference, Montreal, Canada.
  27. Ens, J., and Pasquier, P. (2021, November). Building the MetaMIDI dataset: Linking symbolic and audio musical data. In Proceedings of the International Society for Music Information Retrieval Conference, Online.
  28. Foscarin, F., McLeod, A., Rigaux, P., Jacquemard, F., and Sakai, M. (2020, October). ASAP: A dataset of aligned scores and performances for piano transcription. In Proceedings of the International Society for Music Information Retrieval Conference, Montreal, Canada.
  29. Fradet, N., Briot, J.‑P., Chhel, F., Seghrouchni, A. E. F., and Gutowski, N. (2021, November). MidiTok: A python package for MIDI file tokenization. In Proceedings of the International Society for Music Information Retrieval Conference, Online.
  30. Gillick, J., Roberts, A., Engel, J., Eck, D., and Bamman, D. (2019, June). Learning to groove with inverse sequence transformations. In Proceedings of the International Conference on Machine Learning, Long Beach, United States.
  31. Goddard, C., Barthet, M., and Wiggins, G. (2018). Assessing musical similarity for computational music creativity. Journal of the Audio Engineering Society, 66(4), 267276. 10.17743/jaes.2018.0012
  32. Goebl, W. (1999). The Vienna 4 × 22 Piano Corpus. https://repo.mdw.ac.at/projects/IWK/the_vienna_4x22_piano_corpus/index.html
  33. Goebl, W. (2001). Melody lead in piano performance: Expressive device or artifact? Journal of the Acoustical Society of America, 110(1), 563572. 10.1121/1.1376133
  34. Gómez‑Marín, D., Jordà, S., and Herrera, P. (2020). Drum rhythm spaces: From polyphonic similarity to generative maps. Journal of New Music Research, 49(5), 438456. 10.1080/09298215.2020.1806887
  35. Government of Canada. (2024). The Canadian Copyright Act, RSC 1985, c. C‑42, s. 29 (fair dealing for research and private study. https://laws-lois.justice.gc.ca/eng/acts/C-42/section-29.html
  36. Grachten, M., and Widmer, G. (2012). Linear basis models for prediction and analysis of musical expression. Journal of New Music Research, 41(4), 311322. 10.1080/09298215.2012.731071
  37. Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C.‑Z. A., Dieleman, S., Elsen, E., Engel, J., and Eck, D. (2019, May). Enabling factorized piano music modeling and generation with the MAESTRO dataset. In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, United States.
  38. Hernandez‑Olivan, C., and Beltrán, J. R. (2022). Music composition with deep learning: A review. In A. Biswas, E. Wennekes, A. Wieczorkowska, and R. H. Laskar (Eds.), Advances in speech and music technology: computational aspects and applications, (pp. 2550). Springer. 10.1007/978-3-031-18444-4
  39. Hu, P., and Widmer, G. (2023, November). The Batik‑plays‑Mozart Corpus: Linking performance to score to musicological annotations. In Proceedings of the International Society for Music Information Retrieval Conference, Milan, Italy.
  40. Huang, C.‑Z. A., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, C., Dai, A. M., Hoffman, M. D., Dinculescu, M., and Eck, D. (2019, May). Music transformer. In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, United States.
  41. Hung, H.‑T., Ching, J., Doh, S., Kim, N., Nam, J., and Yang, Y.‑H. (2021, November). EMOPIA: A multi‑modal pop piano dataset for emotion recognition and emotion‑based music generation. In Proceedings of the International Society for Music Information Retrieval Conference, Online.
  42. Hyun, L., Kim, T., Kang, H., Ki, M., Hwang, H., Park, K., Han, S., and Kim, S. J. (2022, December). ComMU: Dataset for combinatorial music generation. In Proceedings of the Conference on Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track, New Orleans, United States.
  43. Jacobsen, A., de Miranda Azevedo, R., Juty, N., Batista, D., Coles, S., Cornet, R., Courtot, M., Crosas, M., Dumontier, M., Evelo, C. T., Goble, C., Guizzardi, G., Hansen, K. K., Hasnain, A., Hettne, K., Heringa, J., Hooft, R. W., Imming, M., Jeffery, K. G., and Schultes, E. (2020). FAIR principles: Interpretations and implementation considerations. Data Intelligence, 2(1‑2), 1029. 10.1162/dint_r_00024
  44. Kim, H., Miron, M., and Serra, X. (2022, December). Note level MIDI velocity estimation for piano performance. In Proceedings of the International Society for Music Information Retrieval Conference, Bengaluru, India.
  45. Kleinbaum, D. G., Dietz, K., Gail, M., Klein, M., and Klein, M. (2002). Logistic regression. Springer. 10.1007/978-1-4419-1742-3
  46. Kong, Q., Li, B., Chen, J., and Wang, Y. (2022). GiantMIDI‑Piano: A large‑scale MIDI dataset for classical piano music. Transactions of the International Society for Music Information Retrieval. 10.5334/tismir.80
  47. Kuo, C.‑S., Chen, W.‑K., Liu, C.‑H., and You, S. D. (2021, September). Velocity prediction for MIDI notes with deep learning. In Proceedings of IEEE International Conference on Consumer Electronics‑Taiwan, Penghu, Taiwan.
  48. Li, B., Liu, X., Dinesh, K., Duan, Z., and Sharma, G. (2018). Creating a multitrack classical music performance dataset for multimodal music analysis: Challenges, insights, and applications. IEEE Transactions on Multimedia, 21(2), 522535. 10.48550/arXiv.1612.08727
  49. Li, T., Ogihara, M., and Tzanetakis, G. (2012). Music data mining. CRC Press. 10.1201/b11041
  50. Licata, T. (2002). Electroacoustic music: Analytical perspectives. Bloomsbury Publishing USA. ISBN‑10: 0313314209.
  51. Liu, J., Dong, Y., Cheng, Z., Zhang, X., Li, X., Yu, F., and Sun, M. (2022, December). Symphony generation with permutation invariant language model. In Proceedings of the International Society for Music Information Retrieval Conference, Bengaluru, India.
  52. Ma, X., Liu, X., Zhang, B., and Wang, Y. (2022, December). Robust melody track identification in symbolic music. In Proceedings of International Society for Music Information Retrieval Conference, Bengaluru, India.
  53. Manzelli, R., Thakkar, V., Siahkamari, A., and Kulis, B. (2018, September). Conditioning deep generative raw audio models for structured automatic music. In Proceedings of International Society for Music Information Retrieval Conference, Paris, France.
  54. Mauch, M., MacCallum, R. M., Levy, M., and Leroi, A. M. (2015). The evolution of popular music: USA 1960–2010. Royal Society Open Science, 2(5), 150081. 10.1098/rsos.150081
  55. Meroño‑Peñuela, A., Hoekstra, R., Gangemi, A., Bloem, P., de Valk, R., Stringer, B., Janssen, B., de Boer, V., Allik, A., and Schlobach, S. (2017). The MIDI linked data cloud. In The Semantic Web–ISWC 2017:16th International Semantic Web Conference, Vienna, Austria, October 21‑25, 2017, Proceedings, Part II 16 (Vol. 16, pp. 156164). Springer. 10.1007/978-3-319-68204-4\_16
  56. MIDI Association. (1996a). The complete MIDI 1.0 detailed specification. https://midi.org/spec-detail
  57. MIDI Association. (1996b). General MIDI instrument group and mapping. https://midi.org/general-midi-level-1
  58. Miron, M., Carabias‑Orti, J. J., Bosch, J. J., Gómez, E., Janer, J., et al. (2016). Score‑informed source separation for multichannel orchestral recordings. Journal of Electrical and Computer Engineering. 10.1155/2016/8363507
  59. Müller, M., Konz, V., Bogler, W., and Arifi‑Müller, V. (2011, October). Saarland music data (SMD). In Proceedings of the international society for music information retrieval conference (ISMIR): late breaking session.
  60. Ortega, F. J., Giraldo, S. I., Perez, A., and Ramírez, R. (2019). Phrase‑level modelling of expression in violin performances. Journal of Frontiers in Psychology, 10, 776. 10.3389/fpsyg.2019.00776
  61. Palmer, C. (1997). Music performance. Annual Review of Psychology, 48(1), 115138. 10.1146/annurev.psych.48.1.115
  62. Payne, C. (2019). MuseNet (OpenAI). https://openai.com/blog/musenet
  63. Plut, C., Pasquier, P., Ens, J., and Tchemeube, R. (2022). The IsoVAT corpus: parameterization of musical features for affective composition. Transactions of the International Society for Music Information Retrieval (TISMIR), 5(1), 173189. 10.5334/tismir.120
  64. Qiu, L., Li, S., and Sung, Y. (2021). DBTMPE: Deep bidirectional transformers‑based masked predictive encoder approach for music genre classification. Mathematics, 9(5), 530. 10.3390/math9050530
  65. Raffel, C. (2016). The Lakh MIDI dataset v0.1. https://colinraffel.com/projects/lmd/
  66. Raffel, C., and Ellis, D. P. (2016a, March). Optimizing DTW‑based audio‑to‑MIDI alignment and matching. In Proceedings of International Conference on Acoustics, Speech and Signal Processing, Shanghai, China.
  67. Raffel, C., and Ellis, D. P. W. (August, 2016b). Extracting ground truth information from MIDI files: A MIDIfesto. In Proceedings of the International Society for Music Information Retrieval Conference, New York, United States.
  68. Repp, B. H. (1997a). Acoustics, perception, and production of legato articulation on a computer‑controlled grand piano. Journal of the Acoustical Society of America, 102(3), 18781890. 10.1121/1.420110
  69. Repp, B. H. (1997b). The aesthetic quality of a quantitatively average music performance: Two preliminary experiments. Music Perception, 14(4), 419444. 10.2307/40285732
  70. Ryu, J., Rhyu, S., Yoon, H.‑G., Kim, E., Yang, J. Y., and Kim, T. (2024, February). MID‑FiLD: MIDI dataset for fine‑level dynamics. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, Canada.
  71. Sarmento, P., Kumar, A., Carr, C., Zukowski, Z., Barthet, M., and Yang, Y.‑H. (2021, November). DadaGP: A dataset of tokenized GuitarPro songs for sequence models. In Proceedings of International Society for Music Information Retrieval Conference, Online.
  72. Sarmento, P., Kumar, A., Chen, Y.‑H., Carr, C., Zukowski, Z., and Barthet, M. (2023a, April). GTR‑CTRL: Instrument and genre conditioning for guitar‑focused music generation with transformers. In Proceedings of the EvoMUSART Conference, Brno, Czech Republic.
  73. Sarmento, P., Kumar, A., Xie, D., Carr, C., Zukowski, Z., and Barthet, M. (2023b, November). ShredGP: Guitarist style‑conditioned tablature generation. In The 16th International Symposium on Computer Music Multidisciplinary Research, Tokyo, Japan.
  74. Schaffrath, H. (1995). The Essen Folksong Collection. http://www.esac-data.org/
  75. Shih, Y.‑J., Wu, S.‑L., Zalkow, F., Muller, M., and Yang, Y.‑H. (2022). Theme Transformer: symbolic music generation with theme‑conditioned transformer. IEEE Transactions on Multimedia. 10.48550/arXiv.2111.04093
  76. Simonetta, F., Carnovalini, F., Orio, N., and Rodà, A. (2018, September). Symbolic music similarity through a graph‑based representation. In Proceedings of the Audio Mostly Conference, Wrexham, United Kingdom.
  77. Sitarz, M. (2022). Extending F1 metric, probabilisticapproach. Journal of Advances in Artificial Intelligence and Machine Learning, 3, 10251038. 10.48550/arXiv.2210.11997
  78. Szelogowski, D., Mukherjee, L., and Whitcomb, B. (2022, December). A novel dataset and deep learning benchmark for classical music form recognition and analysis. In Proceedings of International Society for Music Information Retrieval Conference, Bengaluru, India.
  79. Tang, J., Wiggins, G., and Fazekas, G. (2023, November). Reconstructing human expressiveness in piano performances with a Transformer network. In Proceedings of International Symposium on Computer Music Multidisciplinary Research (CMMR), Tokyo, Japan.
  80. vo Rütte, D., Biggio, L., Kilcher, Y., and Hofmann, T. (2023). FIGARO: generating symbolic music with fine‑grained artistic control. In Proceedings of International Conference on Learning Representations, Kigali, Rwanda.
  81. Wang, Z., Chen, K., Jiang, J., Zhang, Y., Xu, M., Dai, S., Gu, X., and Xia, G. (2020, October). POP909: A pop‑song dataset for music arrangement generation. In Proceedings of International Society for Music Information Retrieval Conference, Montreal, Canada.
  82. Wong, T.‑T. (2015). Performance evaluation of classification algorithms by k‑fold and leave‑one‑out cross validation. Pattern Recognition, 48(9), 28392846. 10.1016/j.patcog.2015.03.009
  83. Zeng, M., Tan, X., Wang, R., Ju, Z., Qin, T., and Liu, T.‑Y. (2021, August). Musicbert: Symbolic music understanding with large‑scale pre‑training. In Proceedings of the Joint Conference of the Annual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing, Bangkok, Thailand.
  84. Zhang, H., Tang, J., Rafee, S. R. M., and Fazekas, S. D. G. (2022, December). ATEPP: A dataset of automatically transcribed expressive piano performance. In Proceedings of International Society for Music Information Retrieval Conference, Bengaluru, India.
  85. Zhang, N. (2020). Learning adversarial transformer for symbolic music generation. IEEE Transactions on Neural Networks and Learning Systems. 10.1109/TNNLS.2020.2990746
  86. Zukowski, Z., and Carr, C. (2017, December). Generating black metal and math rock: Beyond Bach, Beethoven, and Beatles. In NIPS Workshop on Machine Learning for Creativity and Design, Long Beach, United States.
DOI: https://doi.org/10.5334/tismir.203 | Journal eISSN: 2514-3298
Language: English
Submitted on: May 14, 2024
Accepted on: Nov 11, 2024
Published on: Feb 7, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Keon Ju Maverick Lee, Jeff Ens, Sara Adkins, Pedro Sarmento, Mathieu Barthet, Philippe Pasquier, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.