Have a personal or library account? Click to login
BPSD: A Coherent Multi-Version Dataset for Analyzing the First Movements of Beethoven’s Piano Sonatas Cover

BPSD: A Coherent Multi-Version Dataset for Analyzing the First Movements of Beethoven’s Piano Sonatas

Open Access
|Sep 2024

References

  1. Benetos, E., Dixon, S., Duan, Z., and Ewert, S. (2019). Automatic music transcription: An overview. IEEE Signal Processing Magazine, 36(1), 2030. 10.1109/msp.2018.2869928
  2. Bittner, R. M., Fuentes, M., Rubinstein, D., Jansson, A., Choi, K., and Kell, T. (2019). Mirdata: Software for reproducible usage of datasets. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, pp. 99106.
  3. Bittner, R. M., Salamon, J., Tierney, M., Mauch, M., Cannam, C., and Bello, J. P. (2014). MedleyDB: A multitrack dataset for annotation-intensive MIR research. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Taipei, Taiwan, pp. 155160.
  4. Böck, S., Davies, M. E. P., and Knees, P. (2019). Multitask learning of tempo and beat: Learning one to improve the other. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, pp. 486493.
  5. Calvo-Zaragoza, J., Hajič, Jr., J, and Pacha, A. (2020). Understanding optical music recognition. ACM Computing Surveys, 53(4). 10.1145/3397499
  6. Cannam, C., Landone, C., and Sandler, M. B. (2010). Sonic visualiser: An open source application for viewing, analysing, and annotating music audio files. In Proceedings of the International Conference on Multimedia, Florence, Italy, pp. 14671468.
  7. Chen, T., and Su, L. (2018). Functional harmony recognition of symbolic music data with multi-task recurrent neural networks. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Paris, France, pp. 9097.
  8. Cooper, B. (2017). The Creation of Beethoven’s 35 Piano Sonatas. Routledge.
  9. Damschroder, D. (2016). Harmony in Beethoven. Cambridge University Press.
  10. Emiya, V., Badeau, R., and David, B. (2010). Multipitch estimation of piano sounds using a new probabilistic spectral smoothness principle. IEEE Transactions on Audio, Speech, and Language Processing, 18(6), 16431654. 10.1109/tasl.2009.2038819
  11. Foscarin, F., McLeod, A., Rigaux, P., Jacquemard, F., and Sakai, M. (2020). ASAP: A dataset of aligned scores and performances for piano transcription. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 534541).
  12. Gadermaier, T., and Widmer, G. (2019). A study of annotation and alignment accuracy for performance comparison in complex orchestral music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, pp. 769775.
  13. Gotham, M., Hentschel, J., Couturier, L., Dykeaylen, N., Rohrmeier, M., and Giraud, M. (2023a). The ‘measure map’: An inter-operable standard for aligning symbolic music. In M. E. Thomae (Ed.), Proceedings of the International Conference on Digital Libraries for Musicology (DLfM) (pp. 9199). ACM.
  14. Gotham, M., and Ireland, M. (2019). Taking form: A representation standard, conversion code, and example corpora for recording, visualizing, and studying analyses of musical form. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, pp. 693699.
  15. Gotham, M., Micchi, G., López, N. N., and Sailor, M. (2023b). When in rome: A meta-corpus of functional harmony. Transaction of the International Society for Music Information Retrieval (TISMIR), 6(1), 150166. 10.5334/tismir.165
  16. Goto, M. (2004). Development of the RWC music database. In Proceedings of the International Congress on Acoustics (ICA) (pp. 553556).
  17. Harte, C., Sandler, M. B., Abdallah, S., and Gómez, E. (2005). Symbolic representation of musical chords: A proposed syntax for text annotations. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), London, UK, pp. 6671.
  18. Hawthorne, C., Elsen, E., Song, J., Roberts, A., Simon, I., Raffel, C., Engel, J. H., Oore, S., and Eck, D. (2018). Onsets and frames: Dual-objective piano transcription. In Proceedings of the International Society for Music Information Retrieval Conference, (ISMIR), Paris, France, pp. 5057.
  19. Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C. A., Dieleman, S., Elsen, E., Engel, J. H., and Eck, D. (2019). Enabling factorized piano music modeling and generation with the MAESTRO dataset. In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, Louisiana, USA.
  20. Hentschel, J., Neuwirth, M., and Rohrmeier, M. (2021). The annotated mozart sonatas: Score, harmony, and cadence. Transaction of the International Society for Music Information Retrieval (TISMIR), 4(1), 6780. 10.5334/tismir.63
  21. Hentschel, J., Rammos, Y., Moss, F. C., Neuwirth, M., and Rohrmeier, M. (2023). An annotated corpus of tonal piano music from the long 19th century. Empirical Musicology Review, 18(1), 8495. 10.18061/emr.v18i1.8903
  22. Hepokoski, J., and Darcy, W. (2006). Elements of Sonata Theory. Norms, Types, and Deformations in the Late-Eighteenth-Century Sonata. Oxford University Press.
  23. Hsiao, Y., Hung, T., Chen, T., and Su, L. (2023). BPSMotif: A dataset for repeated pattern discovery of polyphonic symbolic music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (pp. 281288).
  24. Jiang, N., and Müller, M. (2013). Automated methods for analyzing music recordings in sonata form. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Curitiba, Brazil. (pp. 595600).
  25. Klauk, S., Kleinertz, R., Weiß, C., and Müller, M. (2021). Seitensatz versus Mittelsatz: Expositionen in Beethovens frühen Klaviersonaten zwischen zeitgenössischer Theorie und computergestützter Analyse. In S. Hohmaier (Ed.), Jahrbuch 2017 des Staatlichen Instituts für Musikforschung (SIM) - Preußischer Kulturbesitz (pp. 271300). Schott Music.
  26. Kleinertz, R. (2016). Streichquartette von Joseph Haydn und Wolfgang Amadeus Mozart im Spiegel der Sonatentheorie Francesco Galeazzis. In C. Speck (Ed.), The String Quartet from 1750 to 1870: From the Private to the Public Sphere (Vol. 26, pp. 297316). Brepols.
  27. Konz, V., Müller, M., and Kleinertz, R. (2013). A cross-version chord labelling approach for exploring harmonic structures-a case study on Beethoven’s Appassionata. Journal of New Music Research, 42(1), 6177. 10.1080/09298215.2012.750369
  28. Lerch, A., Arthur, C., Pati, A., and Gururani, S. (2020). An interdisciplinary review of music performance analysis. Transactions of the International Society for Music Information Retrieval (TISMIR), 3(1), 221245. 10.5334/tismir.53
  29. Maman, B., and Bermano, A. H. (2022). Unaligned supervision for automatic music transcription in the wild. In Proceedings of the International Conference on Machine Learning (ICML) (pp. 1491814934).
  30. Mauch, M., MacCallum, R. M., Levy, M., and Leroi, A. M. (2015). The evolution of popular music: USA 1960–2010. Royal Society Open Science, 2(5). 10.1098/rsos.150081
  31. Meredith, D. (Ed.). (2016). Computational Music Analysis. Springer.
  32. Moss, F. C., Neuwirth, M., Harasim, D., and Rohrmeier, M. (2019). Statistical characteristics of tonal harmony: A corpus study of Beethoven's string quartets. PLOS ONE, 14(6). 10.1371/journal.pone.0217242
  33. Müller, M. (2021). Fundamentals of Music Processing Using Python and Jupyter Notebooks (2nd ed.). Springer Verlag.
  34. Müller, M., Arzt, A., Balke, S., Dorfer, M., and Widmer, G. (2019). Cross-modal music retrieval and applications: An overview of key methodologies. IEEE Signal Processing Magazine, 36(1), 5262. 10.1109/msp.2018.2868887
  35. Müller, M., and Ewert, S. (2011). Chroma Toolbox: MATLAB implementations for extracting variants of chroma-based audio features. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Miami, Florida, USA, pp. 215220.
  36. Müller, M., Konz, V., Bogler, W., and Arifi-Müller, V. (2011). Saarland music data (SMD). In Demos and Late Breaking News of the International Society for Music Information Retrieval Conference (ISMIR), Miami, Florida, USA.
  37. Müller, M., Özer, Y., Krause, M., Prätzlich, T., and Driedger, J. (2021). Sync Toolbox: A Python package for efficient, robust, and accurate music synchronization. Journal of Open Source Software (JOSS), 6(64), 3434:14. 10.21105/joss.03434
  38. Nakamura, E., and Kaneko, K. (2019). Statistical evolutionary laws in music styles. Scientific Reports, 9(1). 10.1038/s41598-019-52380-6
  39. Neuwirth, M. (2021). A myriad of exceptions? challenging the sonata-form typology for the classical repertoire. Music Analysis, 40(3), 312352. 10.1111/musa.12186
  40. Neuwirth, M., Harasim, D., Moss, F. C., and Rohrmeier, M. (2018). The Annotated Beethoven Corpus (ABC): A dataset of harmonic analyses of all Beethoven string quartets. Frontiers in Digital Humanities, 5, 16. 10.3389/fdigh.2018.00016
  41. Nieto, O., Mysore, G. J., Wang, C., Smith, J. B. L., Schlüter, J., Grill, T., and McFee, B. (2020). Audio-based music structure analysis: Current trends, open challenges, and applications. Transactions of the International Society for Music Information Retrieval (TISMIR), 3(1), 246263. 10.5334/tismir.78
  42. Özer, Y., Ištvánek, M., Arifi-Müller, V., and Müller, M. (2022). Using activation functions for improving measure-level audio synchronization. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Bengaluru, India, pp. 749756.
  43. Özer, Y., Schwär, S., Arifi-Müller, V., Lawrence, J., Sen, E., and Müller, M. (2023). Piano Concerto Dataset (PCD): A multitrack dataset of piano concertos. Transaction of the International Society for Music Information Retrieval (TISMIR), 6(1), 7588. 10.5334/tismir.160
  44. Pauwels, J., O’Hanlon, K., Gómez, E., and Sandler, M. B. (2019). 20 years of automatic chord recognition from audio. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, pp. 5463.
  45. Peter, S. D., Cancino-Chacó, C. E., Foscarin, F., McLeod, A. P., Henkel, F., Karystinaios, E., and Widmer, G. (2023). Automatic note-level score-to-performance alignments in the ASAP dataset. Transaction of the International Society for Music Information Retrieval (TISMIR), 6(1), 2742. 10.5334/tismir.149
  46. Prätzlich, T., Driedger, J., and Müller, M. (2016). Memory-restricted multiscale dynamic time warping. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Shanghai, China, pp. 569573.
  47. Prätzlich, T., and Müller, M. (2016). Triple-based analysis of music alignments without the need of ground-truth annotations. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Shanghai, China, pp. 266270.
  48. Rosenzweig, S., Scherbaum, F., Shugliashvili, D., Arifi-Müller, V., and Müller, M. (2020). Erkomaishvili dataset: A curated corpus of traditional Georgian vocal music for computational musicology. Transactions of the International Society for Music Information Retrieval (TISMIR), 3(1), 3141. 10.5334/tismir.44
  49. Serra, X. (2014). Creating research corpora for the computational study of music: The case of the CompMusic project. In Proceedings of the AES International Conference on Semantic Audio, London, UK.
  50. Thickstun, J., Harchaoui, Z., and Kakade, S. M. (2017). Learning features of music from scratch. In Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France.
  51. Tovey, D. F. (1998/1931). A Companion to Beethoven’s Pianoforte Sonatas. The Associated Board of the Royal Schools of Music.
  52. Weiß, C., Arifi-Müller, V., Krause, M., Zalkow, F., Klauk, S., Kleinertz, R., and Müller, M. (2023). Wagner Ring Dataset: A complex opera scenario for music processing and computational musicology. Transaction of the International Society for Music Information Retrieval (TISMIR), 6(1), 135149. 10.5334/tismir.161
  53. Weiß, C., Arifi-Müller, V., Prätzlich, T., Kleinertz, R., and Müller, M. (2016). Analyzing measure annotations for Western classical music recordings. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), New York, USA, pp. 517523.
  54. Weiß, C., Klauk, S., Gotham, M., Müller, M., and Kleinertz, R. (2020a). Discourse not dualism: An interdisciplinary dialogue on sonata form in Beethoven’s early piano sonatas. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Montréal, Canada. pp. 199206.
  55. Weiß, C., Schreiber, H., and Müller, M. (2020b). Local key estimation in music recordings: A case study across songs, versions, and annotators. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28, 29192932. 10.1109/taslp.2020.3030485
  56. Weiß, C., Zalkow, F., Arifi-Müller, V., Müller, M., Koops, H. V., Volk, A., and Grohganz, H. (2021a). Schubert Winterreise dataset: A multimodal scenario for music analysis. ACM Journal on Computing and Cultural Heritage (JOCCH), 14(2), 25:118. 10.1145/3429743
  57. Weiß, C., Zeitler, J., Zunner, T., Schuberth, F., and Müller, M. (2021b). Learning pitch-class representations from score-audio pairs of classical music. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pp. 746753. Online.
  58. Zeitler, J., Maman, B., and Müller, M. (2024). Robust and accurate audio synchronization using raw features from transcription models. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), San Francisco, USA.
DOI: https://doi.org/10.5334/tismir.196 | Journal eISSN: 2514-3298
Language: English
Submitted on: Mar 28, 2024
Accepted on: Aug 12, 2024
Published on: Sep 19, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Johannes Zeitler, Christof Weiß, Vlora Arifi-Müller, Meinard Müller, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.