Have a personal or library account? Click to login
PBSCR: The Piano Bootleg Score Composer Recognition Dataset Cover
By: Arhan Jain,  Alec Bunn,  Austin Pham and  TJ Tsai  
Open Access
|Sep 2024

Figures & Tables

Table 1

Overview of recent works on composer classification and the datasets used in these studies. The third column indicates whether the original source data is symbolic, audio, or sheet music images. The fourth column indicates the format of the data after any data format conversions or preprocessing. The fifth column indicates the size of the dataset, where numbers in parentheses indicate unlabeled files for pretraining. For papers that use multiple datasets, we have indicated only the largest.

PaperComposersOriginal Source Data TypePreprocessed Data FormatData Size
Wołkowicz and Kešelj (2013)5symbolicMIDI251 pieces
Hontanilla et al. (2013)5symbolicMIDI274 movements
Herlands et al. (2014)2symbolicMIDI74 movements
Hedges et al. (2014)9symbolicchords5700 lead sheets
Herremans et al. (2015)3symbolicMIDI1045 pieces
Saboo et al. (2015)2symbolicmuseData, kern366 pieces
Brinkman et al. (2016)6symbolicno infono info
Velarde et al. (2016)2symbolickern107 movements
Herremans et al. (2016)3symbolicMIDI1045 movements
Shuvaev et al. (2017)31audioaudio62 hrs
Sadeghian et al. (2017)3symbolicMIDI417 sonatas
Takamoto et al. (2018)5symbolicMIDI75 pieces
Hajj et al. (2018)9symbolicMIDI1197 pieces
Velarde et al. (2018)5symbolicMIDI, audio (synthesized)207 movements
Micchi (2018)6audioaudio320 recordings
Goienetxea et al. (2018)5symbolickern1586 pieces
Verma and Thickstun (2019)19symbolickern2500 pieces
Costa and Salazar (2019)3symbolicno info10 pieces
Kim et al. (2020)13symbolicMIDI505 pieces
Kong et al. (2020)100audioMIDI (transcribed)10854 pieces
Revathi et al. (2020)4audioaudio40 pieces
Kempfert and Wong (2020)2symbolickern285 movements
Chou et al. (2021)8symbolicMIDI411 pieces
Yang and Tsai (2021a)9sheet musicbootleg score787 works (29310 works)
Walwadkar et al. (2022)9sheet musicimage, bootleg score32k images
Deepaisarn et al. (2022)5symbolicMIDI809 pieces
Kher (2022)11symbolicMIDI, audio (synthesized)110 pieces
Foscarin et al. (2022)13symbolicMIDI667 pieces
Li et al. (2023)8audioMIDI (transcribed)411 pieces
Deepaisarn et al. (2023)5symbolicMIDI809 pieces
Simonetta et al. (2023)7symbolicMIDI211 pieces
Zhang et al. (2023)9symbolicMIDI, MusicXML415 scores
PBSCR100sheet musicbootleg score4997 works (29310 works)
tismir-7-1-185-g1.png
Figure 1

Two examples of a piano sheet music excerpt (left) and corresponding bootleg score representation (right). Staff lines are not encoded in the bootleg score representation itself, but they are overlaid in the examples above as a visual reference.

tismir-7-1-185-g2.png
Figure 2

Examples of non-music filler pages and their extracted (gibberish) bootleg scores.

tismir-7-1-185-g3.png
Figure 3

Histogram of the number of bootleg score events in a set of manually labeled music pages (top) and non-music pages (bottom).

tismir-7-1-185-g4.png
Figure 4

Predicted probability of an ensemble classifier that classifies validation pages as filler (non-music) vs. non-filler. We use a hard threshold of 0.5 to ensure that filler pages are excluded from our dataset with high confidence.

tismir-7-1-185-g5.png
Figure 5

(Top) The total number of pieces/works available on IMSLP for the composers in the 100-class dataset. (Bottom) The total number of bootleg score events for each composer in the 100-class dataset. The list of composers sorted by number of works can be found at https://github.com/HMC-MIR/PBSCR/blob/main/forPaper/composers_sorted_numpieces.txt.

tismir-7-1-185-g6.png
Figure 6

Example bootleg score images from the labeled 9-class PBSCR data. Staff lines have been overlaid for ease of interpretation.

Table 2

Overview of the raw sheet music data from which the 9-class PBSCR data was constructed. Cumulative counts for the 100-class data are also shown at the bottom.

Composer# Works# Pages (all/music)# Bootleg Features
Bach226424,948
Beethoven86272,374
Chopin89205,513
Haydn5150/5012,408
Liszt179 3405/3170575,367
Mozart61702/673174,355
Schubert88836/836206,103
Schumann40981/919206,379
Scriabin76879/825135,851
9-class89610,945/10,3052,213,298
100-class499770,440/64,12912,108,749
Table 3

Baseline results for the 9-class PBSCR task. Results are shown for top-1 accuracy (%) and mean reciprocal rank.

SystemTop 1MRR
CNN40.00.593
GPT-2 (LP-FT)49.60.670
GPT-2 (LP)42.50.613
GPT-2 (no pretrain)25.00.466
RoBERTa (LP-FT)44.40.631
RoBERTa (LP)38.00.581
RoBERTa (no pretrain)19.20.407
Table 4

Baseline results for the 100-class PBSCR task. Results are shown for top-1, top-5, and top-10 accuracy (%).

SystemTop 1Top 5Top 10
CNN7.421.332.4
GPT-2 (LP-FT)13.934.849.0
GPT-2 (LP)10.428.542.8
GPT-2 (no pretrain)3.211.620.4
RoBERTa (LP-FT)10.629.042.0
RoBERTa (LP)7.522.935.0
RoBERTa (no pretrain)2.18.115.0
Table 5

Baseline results for the -shot 9-class recognition task. Results are expressed as mean and standard deviation across 30 trials. Top-1 accuracies are indicated in percentages (%).

SystemNTop-1 meanTop-1 stdMRR meanMRR std
GPT-2115.42.30.360.020
RoBERTa114.51.80.350.017
Random111.20.30.320.003
GPT-21019.71.80.410.013
RoBERTa1019.81.60.410.013
Random1011.00.40.310.003
GPT-210023.80.80.450.006
RoBERTa10023.70.90.450.006
Random10011.10.40.310.004
Table 6

Baseline results for the N-shot 100-class recognition task. Results are expressed as a mean and a standard deviation across 30 trials.

SystemNTop-1meanTop-1stdTop-5meanTop-5stdTop-10meanTop-10std
GPT-211.90.217.70.4414.10.56
RoBERTa11.80.207.70.4514.10.57
Random11.00.065.00.1310.00.21
GPT-2103.00.2511.20.3819.10.50
RoBERTa103.10.1911.30.3919.30.54
Random101.00.105.00.1510.00.23
GPT-21003.991714.20.3023.50.41
RoBERTa1004.00.1414.30.2723.70.34
Random1001.00.075.00.1610.00.21
DOI: https://doi.org/10.5334/tismir.185 | Journal eISSN: 2514-3298
Language: English
Submitted on: Feb 3, 2024
Accepted on: Jul 31, 2024
Published on: Sep 14, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Arhan Jain, Alec Bunn, Austin Pham, TJ Tsai, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.