Have a personal or library account? Click to login
PiJAMA: Piano Jazz with Automatic MIDI Annotations Cover
Open Access
|Sep 2023

References

  1. Balke, S., Reck, J., Weis, C., Abeser, J., and Muller, M. (2022). JSD: A dataset for structure analysis in jazz music. Transactions of the International Society for Music Information Retrieval, 5(1):156172. DOI: 10.5334/tismir.131
  2. Bayley, L. R. (2023). Granz’ Art Tatum recordings: A piano method for jazz. https://artmusiclounge.wordpress.com/2023/01/26/granz-art-tatum-recordings-a-piano-method-for-jazz/.
  3. Elsdon, P. S. (2001). Keith Jarrett’s solo concerts and the aesthetics of free improvisation 19601973. PhD thesis, University of Southampton.
  4. Emiya, V., Bertin, N., David, B., and Badeau, R. (2010). MAPS – A piano database for multipitch estimation and automatic transcription of music. Research report inria-00544155, Telecom ParisTech.
  5. Eremenko, V., Demirel, E., Bozkurt, B., and Serra, X. (2018). Audio-aligned jazz harmony dataset for automatic chord transcription and corpus-based research. In Proceedings of the 19th International Society for Music Information Retrieval Conference.
  6. Flexer, A. and Schnitzer, D. (2010). Effects of album and artist filters in audio similarity computed for very large music databases. Computer Music Journal, 34(3):2028. DOI: 10.1162/COMJ_a_00004
  7. Forte, A. (1962). Tonal Harmony in Concept and Practice. Holt, Rinehart and Winston.
  8. Gardner, J. P., Simon, I., Manilow, E., Hawthorne, C., and Engel, J. (2022). MT3: Multi-task multitrack music transcription. In International Conference on Learning Representations.
  9. Gong, Y., Chung, Y.-A., and Glass, J. (2021). AST: Audio Spectrogram Transformer. In Proceedings of Interspeech 2021, pages 571575. DOI: 10.21437/Interspeech.2021–;698
  10. Goto, M., Hashiguchi, H., Nishimura, T., and Oka, R. (2002). RWC Music Database: Popular, Classical and Jazz Music Databases. In Proceedings of the 3rd International Conference on Music Information Retrieval, Paris, France. ISMIR.
  11. Hawthorne, C., Elsen, E., Song, J., Roberts, A., Simon, I., Raffel, C., Engel, J., Oore, S., and Eck, D. (2018). Onsets and frames: Dual-objective piano transcription. In Proceedings of the 19th International Society for Music Information Retrieval Conference.
  12. Hawthorne, C., Simon, I., Swavely, R., Manilow, E., and Engel, J. (2021). Sequence-to-sequence piano transcription with transformers. In Proceedings of the 22nd International Society for Music Information Retrieval Conference.
  13. Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C.-Z. A., Dieleman, S., Elsen, E., Engel, J., and Eck, D. (2019). Enabling factorized piano music modeling and generation with the MAESTRO dataset. In International Conference on Learning Representations.
  14. Höger, F., Frieler, K., Pfleiderer, M., and Dixon, S. (2019). Dig that lick: Exploring melodic patterns in jazz improvisation. In 20th International Society for Music Information Retrieval Conference: Late Breaking Demo.
  15. Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Simon, I., Hawthorne, C., Shazeer, N., Dai, A. M., Hoffman, M. D., Dinculescu, M., and Eck, D. (2019). Music transformer. In International Conference on Learning Representations.
  16. Kelz, R., Dorfer, M., Korzeniowski, F., Bock, S., Arzt, A., and Widmer, G. (2016). On the potential of simple framewise approaches to piano transcription. In Proceedings of the 17th International Society for Music Information Retrieval Conference, pages 475481.
  17. Kong, Q., Li, B., Chen, J., and Wang, Y. (2022). GiantMIDI-piano: A large-scale MIDI dataset for classical piano music. Transactions of the International Society for Music Information Retrieval, 5(1):8798. DOI: 10.5334/tismir.80
  18. Kong, Q., Li, B., Song, X., Wan, Y., and Wang, Y. (2021). High-resolution piano transcription with pedals by regressing onset and offset times. IEEE/ACM Transactions on Audio, Speech and Language Processing, 29:37073717. DOI: 10.1109/TASLP.2021.3121991
  19. Levine, M. (1989). The Jazz Piano Book. Sher Music Co.
  20. Pfleiderer, M., Frieler, K., Abeser, J., Zaddach, W.-G., and Burkhart, B., editors (2017). Inside the Jazzomat – New Perspectives for Jazz Research. Schott Campus.
  21. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. CoRR. http://arxiv.org/abs/1506.02640. DOI: 10.1109/CVPR.2016.91
  22. Rodríguez-Algarra, F., Sturm, B. L., and Dixon, S. (2019). Characterising confounding effects in music classification experiments through interventions. Transactions of the International Society for Music Information Retrieval, 2(1):5266. DOI: 10.5334/tismir.24
  23. Sigtia, S., Benetos, E., and Dixon, S. (2016). An end-to-end neural network for polyphonic piano music transcription. IEEE/ACM Transactions on Audio, Speech and Language Processing, 24(5):927939. DOI: 10.1109/TASLP.2016.2533858
  24. Simon, I., Huang, C.-Z. A., Engel, J., Hawthorne, C., and Dinculescu, M. (2019). Generating piano music with transformer. https://magenta.tensorflow.org/piano-transformer.
  25. Siskind, J. (2020). Playing Solo Jazz Piano: A New Approach for Creative Pianists. Jeremy Siskind Music Publishing.
  26. Swartz, A. (2002). MusicBrainz: A semantic web service. IEEE Intelligent Systems, 17(1):7677. DOI: 10.1109/5254.988466
  27. Taylor, B. (1975). The History and Development of Jazz Piano: A New Perspective for Educators. University of Massachusetts Amherst.
  28. Zhang, H., Tang, J., Rafee, S., Dixon, S., and Fazekas, G. (2022). ATEPP: A dataset of automatically transcribed expressive piano performance. In Proceedings of the 23rd International Society for Music Information Retrieval Conference, pages 446453.
DOI: https://doi.org/10.5334/tismir.162 | Journal eISSN: 2514-3298
Language: English
Submitted on: Mar 2, 2023
|
Accepted on: Aug 4, 2023
|
Published on: Sep 15, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Drew Edwards, Simon Dixon, Emmanouil Benetos, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.