Have a personal or library account? Click to login
Perceptual and automated estimates of infringement in 40 music copyright cases Cover

Perceptual and automated estimates of infringement in 40 music copyright cases

Open Access
|Oct 2023

References

  1. 1Agostinelli, A., Denk, T. I., Borsos, Z., Engel, J., Verzetti, M., Caillon, A., Huang, Q., Jansen, A., Roberts, A., Tagliasacchi, M., Sharifi, M., Zeghidour, N., & Frank, C. (2023). MusicLM: Generating music from text. ArXiv. DOI: 10.48550/arXiv.2301.11325
  2. 2Allan, H., Müllensiefen, D., & Wiggins, G. A. (2007). Methodological considerations in studies of musical similarity. Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007), 473478.
  3. 3Brauneis, R., Cronin, C., & Lim, D. (2022, March 18). Music copyright infringement: Global perspectives [Virtual conference]. https://mailchi.mp/uic.edu/8fjl6kpwdr-2683852
  4. 4Casey, M. A., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., & Slaney, M. (2008). Content-based music information retrieval: Current directions and future challenges. Proceedings of the IEEE, 96(4), 668696. DOI: 10.1109/JPROC.2008.916370
  5. 5Cason, R. J. S., & Müllensiefen, D. (2012). Singing from the same sheet: Computational melodic similarity measurement and copyright law. International Review of Law, Computers & Technology, 26(1), 2536. DOI: 10.1080/13600869.2012.646786
  6. 6Choi, K., Fazekas, G., Sandler, M., & Cho, K. (2017). Convolutional recurrent neural networks for music classification. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 23922396. DOI: 10.1109/ICASSP.2017.7952585
  7. 7Cronin, C. (2018). Music Copyright Infringement Resource. http://mcir.usc.edu/
  8. 8Daikoku, H., Ding, S., Benetos, E., Wood, A. L. C., Shimozono, T., Sanne, U. S., Fujii, S., & Savage, P. E. (2022). Agreement among human and automated estimates of similarity in a global music sample. Proceedings of the 2022 International Folk Music Analysis Workshop (FMA 2022), 2632. DOI: 10.5281/zenodo.7100288
  9. 9Fishman, J. P. (2018). Music as a matter of law. Harvard Law Review, 131(7), 18611923.
  10. 10Flexer, A., & Grill, T. (2016). The problem of limited inter-rater agreement in modelling music similarity. Journal of New Music Research, 45(3), 239251. DOI: 10.1080/09298215.2016.1200631
  11. 11Hennequin, R., Khlif, A., Voituret, F., & Moussallam, M. (2021). Deezer Research: Spleeter. https://research.deezer.com/projects/spleeter.html
  12. 12Lock, O., & O’Rorke, O. (2022, July 29). “22 million songs a year, and only 12 notes available”: Pursuing a copyright claim in the music industry today. Music:)Ally. https://musically.com/2022/07/29/ed-sheeran-pursuing-a-copyright-claim-in-the-music-industry-today/
  13. 13Lund, J. (2011). An empirical examination of the lay listener test in music composition copyright infringement. Virginia Sports and Entertainment Law Journal, 11(1), 137177. DOI: 10.2139/ssrn.2030509
  14. 14Malandrino, D., De Prisco, R., Ianulardo, M., & Zaccagnino, R. (2022). An adaptive meta-heuristic for music plagiarism detection based on text similarity and clustering. Data Mining and Knowledge Discovery, 36(4), 13011334. DOI: 10.1007/s10618-022-00835-2
  15. 15Mandel, M., & Ellis, D. (2005). Song-level features and support vector machines for music classification. Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR 2005), 594599.
  16. 16Müllensiefen, D., & Pendzich, M. (2009). Court decisions on music plagiarism and the predictive value of similarity algorithms. Musicae Scientiae, 13(1 Suppl.), 257295. DOI: 10.1177/102986490901300111
  17. 17Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48, 443453. DOI: 10.1016/0022-2836(70)90057-4
  18. 18Pachet, F., & Roy, P. (2020). Plagiarism Risk Detector and Interface. https://data.epo.org/publication-server/document?iDocId=6403518&iFormat=0
  19. 19Page, W. (2021, November 3). Global value of music copyright jumps 18% to a record high of $39.6bn in 2021: Could it have been even higher? Tarzan Economics. https://tarzaneconomics.com/undercurrents/music-copyright-2021
  20. 20Robine, M., Hanna, P., Ferraro, P., & Allali, J. (2007). Adaptation of string matching algorithms for identificaton of near-duplicate music documents. Workshop on Plagiarism Analysis, Authorship Identification, and Near-Duplicate Detection (PAN07), 3743.
  21. 21Savage, P. E., & Atkinson, Q. D. (2015). Automatic tune family identification by musical sequence alignment. In M. Müller & F. Wiering (Eds.), Proceedings of the 16th International Society for Music Information Retrieval Conference (ISMIR 2015), 162168.
  22. 22Savage, P. E., Cronin, C., Müllensiefen, D., & Atkinson, Q. D. (2018). Quantitative evaluation of music copyright infringement. In A. Holzapfel & A. Pikrakis (Eds.), Proceedings of the 8th International Workshop on Folk Music Analysis (FMA2018), 6166.
  23. 23Schnitzer, D. (2014). Musly: An Open-Source Audio Music Similarity Library. https://www.musly.org
  24. 24Schnitzer, D., Flexer, A., Schedl, M., & Widmer, G. (2011). Using mutual proximity to improve content-based audio similarity. Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011), 7984.
  25. 25Selfridge-Field, E. (1998). Conceptual and representational issues in melodic comparison. Melodic Similarity: Concepts, Procedures, and Applications [Computing in Musicology], 11, 364.
  26. 26Selfridge-Field, E. (2018). Substantial musical similarity in sound and notation: Perspectives from digital musicology. Colorado Technology Law Journal, 16, 249284.
  27. 27Serrà, J., Gómez, E., & Herrera, P. (2010). Audio cover song identification and similarity: Background, approaches, evaluation, and beyond. In Z. W. Raś & A. A. Wieczorkowska (Eds.), Advances in Music Information Retrieval (Studies in Computational Intelligence, vol.274), 307332. Springer. DOI: 10.1007/978-3-642-11674-2_14
  28. 28Yesiler, F., Tralie, C., Correya, A., Silva, D. F., Tovstogan, P., Gómez, E., & Serra, X. (2019). Da-Tacos: A dataset for cover song identification and understanding. Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR 2019), 327334.
  29. 29Yuan, Y., Oishi, S., Cronin, C., Müllensiefen, D., Atkinson, Q. D., Fujii, S., & Savage, P. E. (2020). Perceptual vs. automated judgments of music copyright infringement. Proceedings of the 21 st International Society for Music Information Retrieval Conference (ISMIR 2020), 2329. DOI: 10.31234/osf.io/tq7v5
DOI: https://doi.org/10.5334/tismir.151 | Journal eISSN: 2514-3298
Language: English
Submitted on: Oct 3, 2022
Accepted on: May 17, 2023
Published on: Oct 5, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Yuchen Yuan, Charles Cronin, Daniel Müllensiefen, Shinya Fujii, Patrick E. Savage, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.