References
- 1Agostinelli, A., Denk, T. I., Borsos, Z., Engel, J., Verzetti, M., Caillon, A., Huang, Q., Jansen, A., Roberts, A., Tagliasacchi, M., Sharifi, M., Zeghidour, N., & Frank, C. (2023). MusicLM: Generating music from text. ArXiv. DOI: 10.48550/arXiv.2301.11325
- 2Allan, H., Müllensiefen, D., & Wiggins, G. A. (2007). Methodological considerations in studies of musical similarity. Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR 2007), 473–478.
- 3Brauneis, R., Cronin, C., & Lim, D. (2022, March 18). Music copyright infringement: Global perspectives [Virtual conference].
https://mailchi.mp/uic.edu/8fjl6kpwdr-2683852 - 4Casey, M. A., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., & Slaney, M. (2008). Content-based music information retrieval: Current directions and future challenges. Proceedings of the IEEE, 96(4), 668–696. DOI: 10.1109/JPROC.2008.916370
- 5Cason, R. J. S., & Müllensiefen, D. (2012). Singing from the same sheet: Computational melodic similarity measurement and copyright law. International Review of Law, Computers & Technology, 26(1), 25–36. DOI: 10.1080/13600869.2012.646786
- 6Choi, K., Fazekas, G., Sandler, M., & Cho, K. (2017). Convolutional recurrent neural networks for music classification. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2392–2396. DOI: 10.1109/ICASSP.2017.7952585
- 7Cronin, C. (2018). Music Copyright Infringement Resource.
http://mcir.usc.edu/ - 8Daikoku, H., Ding, S., Benetos, E., Wood, A. L. C., Shimozono, T., Sanne, U. S., Fujii, S., & Savage, P. E. (2022). Agreement among human and automated estimates of similarity in a global music sample. Proceedings of the 2022 International Folk Music Analysis Workshop (FMA 2022), 26–32. DOI: 10.5281/zenodo.7100288
- 9Fishman, J. P. (2018). Music as a matter of law. Harvard Law Review, 131(7), 1861–1923.
- 10Flexer, A., & Grill, T. (2016). The problem of limited inter-rater agreement in modelling music similarity. Journal of New Music Research, 45(3), 239–251. DOI: 10.1080/09298215.2016.1200631
- 11Hennequin, R., Khlif, A., Voituret, F., & Moussallam, M. (2021). Deezer Research: Spleeter.
https://research.deezer.com/projects/spleeter.html - 12Lock, O., & O’Rorke, O. (2022, July 29). “22 million songs a year, and only 12 notes available”: Pursuing a copyright claim in the music industry today. Music:)Ally.
https://musically.com/2022/07/29/ed-sheeran-pursuing-a-copyright-claim-in-the-music-industry-today/ - 13Lund, J. (2011). An empirical examination of the lay listener test in music composition copyright infringement. Virginia Sports and Entertainment Law Journal, 11(1), 137–177. DOI: 10.2139/ssrn.2030509
- 14Malandrino, D., De Prisco, R., Ianulardo, M., & Zaccagnino, R. (2022). An adaptive meta-heuristic for music plagiarism detection based on text similarity and clustering. Data Mining and Knowledge Discovery, 36(4), 1301–1334. DOI: 10.1007/s10618-022-00835-2
- 15Mandel, M., & Ellis, D. (2005). Song-level features and support vector machines for music classification. Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR 2005), 594–599.
- 16Müllensiefen, D., & Pendzich, M. (2009). Court decisions on music plagiarism and the predictive value of similarity algorithms. Musicae Scientiae, 13(1 Suppl.), 257–295. DOI: 10.1177/102986490901300111
- 17Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48, 443–453. DOI: 10.1016/0022-2836(70)90057-4
- 18Pachet, F., & Roy, P. (2020). Plagiarism Risk Detector and Interface.
https://data.epo.org/publication-server/document?iDocId=6403518&iFormat=0 - 19Page, W. (2021, November 3). Global value of music copyright jumps 18% to a record high of $39.6bn in 2021: Could it have been even higher? Tarzan Economics.
https://tarzaneconomics.com/undercurrents/music-copyright-2021 - 20Robine, M., Hanna, P., Ferraro, P., & Allali, J. (2007). Adaptation of string matching algorithms for identificaton of near-duplicate music documents. Workshop on Plagiarism Analysis, Authorship Identification, and Near-Duplicate Detection (PAN07), 37–43.
- 21Savage, P. E., & Atkinson, Q. D. (2015). Automatic tune family identification by musical sequence alignment. In M. Müller & F. Wiering (Eds.), Proceedings of the 16th International Society for Music Information Retrieval Conference (ISMIR 2015), 162–168.
- 22Savage, P. E., Cronin, C., Müllensiefen, D., & Atkinson, Q. D. (2018). Quantitative evaluation of music copyright infringement. In A. Holzapfel & A. Pikrakis (Eds.), Proceedings of the 8th International Workshop on Folk Music Analysis (FMA2018), 61–66.
- 23Schnitzer, D. (2014). Musly: An Open-Source Audio Music Similarity Library.
https://www.musly.org - 24Schnitzer, D., Flexer, A., Schedl, M., & Widmer, G. (2011). Using mutual proximity to improve content-based audio similarity. Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011), 79–84.
- 25Selfridge-Field, E. (1998). Conceptual and representational issues in melodic comparison. Melodic Similarity: Concepts, Procedures, and Applications [Computing in Musicology], 11, 3–64.
- 26Selfridge-Field, E. (2018). Substantial musical similarity in sound and notation: Perspectives from digital musicology. Colorado Technology Law Journal, 16, 249–284.
- 27Serrà, J., Gómez, E., & Herrera, P. (2010).
Audio cover song identification and similarity: Background, approaches, evaluation, and beyond . In Z. W. Raś & A. A. Wieczorkowska (Eds.), Advances in Music Information Retrieval (Studies in Computational Intelligence, vol.274), 307–332. Springer. DOI: 10.1007/978-3-642-11674-2_14 - 28Yesiler, F., Tralie, C., Correya, A., Silva, D. F., Tovstogan, P., Gómez, E., & Serra, X. (2019). Da-Tacos: A dataset for cover song identification and understanding. Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR 2019), 327–334.
- 29Yuan, Y., Oishi, S., Cronin, C., Müllensiefen, D., Atkinson, Q. D., Fujii, S., & Savage, P. E. (2020). Perceptual vs. automated judgments of music copyright infringement. Proceedings of the 21 st International Society for Music Information Retrieval Conference (ISMIR 2020), 23–29. DOI: 10.31234/osf.io/tq7v5
