Have a personal or library account? Click to login
A Clustering-Based Approach to Automatic Harmonic Analysis: An Exploratory Study of Harmony and Form in Mozart’s Piano Sonatas Cover

A Clustering-Based Approach to Automatic Harmonic Analysis: An Exploratory Study of Harmony and Form in Mozart’s Piano Sonatas

Open Access
|Oct 2022

References

  1. 1Aarden, B. (2003). Dynamic Melodic Expectancy. PhD thesis, Ohio State University.
  2. 2Aarden, B., and von Hippel, P. (2004). Rules for chord doubling (and spacing): Which ones do we need? Music Theory Online, 10(2). https://mtosmt.org/issues/mto.04.10.2/mto.04.10.2.aarden_hippel.html
  3. 3Amiot, E. (2016). Music through Fourier space: Discrete Fourier transform in music theory. Cham: Springer. DOI: 10.1007/978-3-319-45581-5
  4. 4Bernardes, G., Cocharro, D., Caetano, M., Guedes, C., and Davies, M.E.P. (2016). A multi-level tonal interval space for modelling pitch relatedness and musical consonance. Journal of New Music Research 45(4), 281294. DOI: 10.1080/09298215.2016.1182192
  5. 5Burgoyne, J.A., Wild, J., and Fujinaga, I. (2013). Compositional data analysis of harmonic structures in popular music. In Yust, J., Wild, J., & Burgoyne, J.A. (Eds.) Mathematics and Computation in Music: Fourth International Conference, MCM 2013, pages 5263. DOI: 10.1007/978-3-642-39357-0_4
  6. 6Chen, T-P., and Su, L. (2018). Functional harmony recognition of symbolic music data with multi-task recurrent neural networks. In Proceedings of the 19th International Conference on Music Information Retrieval (ISMIR), pages 9097.
  7. 7Chen, T-P., and Su, L. (2019). Harmony transformer: Incorporating chord segmentation into harmony recognition. In Proceedings of the 20th International Conference on Music Information Retrieval (ISMIR), pages 259267.
  8. 8Chiu, M. (2021) Macroharmonic progressions through the discrete Fourier transform: An analysis of Maurice Duruflé’s Requiem. Music Theory Online 27(3). DOI: 10.30535/mto.27.3.1
  9. 9Conklin, D. (2002) Representation and discovery of vertical patterns in music. In C. Anagnostopoulou, M. Ferrand, and A. Smaill (Eds.), Music and Artificial Intelligence: Second International Conference (ICMAI 2002), pages 3242. DOI: 10.1007/3-540-45722-4_5
  10. 10Cuddy, L. L., and Badertscher, B. (1987). Recovery of the tonal hierarchy: Some comparisons across age and levels of musical experience. Perception & Psychophysics 41, 60920. DOI: 10.3758/BF03210493
  11. 11Deng, J., and Kwok, Y.-K. (2016). A hybrid Gaussian-HMM-deep-learning approach for automatic chord estimation with very large vocabulary. In Proceedings of the 17th International Society for Music Information Retrieval (ISMIR), pages 812818.
  12. 12DeClercq, T. (2016). Big data, big questions, a closer look at the Yale Classical Archives (c. 2015). Empirical Musicology Review 11(1). https://emusicology.org/article/view/5274. DOI: 10.18061/emr.v11i1.5274
  13. 13DeClercq, T. and Temperley, D. (2011). A corpus analysis of rock harmony. Popular Music 30, 4770. DOI: 10.1017/S026114301000067X
  14. 14Devaney, J., Arthur, C., Condit-Schultz, N., and Nisula, K. (2015). Theme and variation encodings with Roman numerals (TAVERN): A new data set for symbolic music analysis. In Proceedings of the 16th International Conference for Music Information Retrieval (ISMIR), pages 278234.
  15. 15Duane, B., and Jakubowski, J. (2018). Harmonic clusters and tonal cadences: Bayesian learning without chord identification. Journal of New Music Research 47(2), 143165. DOI: 10.1080/09298215.2017.1410181
  16. 16Harasim, D., Affatato, G., and Moss, F.C. (2022). midiVERTO: A web application to visualize tonality in real time. In Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., and Milam, B. (Eds.), Mathematics and Computation in Music: 8th International Conference (MCM 2022), pages 363368. DOI: 10.1007/978-3-031-07015-0_31
  17. 17Harding, J.D. (2020). Computer-aided analysis across the tonal divide: Cross-stylistic applications of the discrete Fourier transform. In de Luca, E. and Flanders, J. (Eds.), Music Encoding Conference Proceedings 2020, pages 95104.
  18. 18Harding, J.D. (2021). Applications of the Discrete Fourier Transform to Music Analysis. PhD thesis, University of Florida.
  19. 19Harte, C., Sandler, M.B., Abdallah, S.A, and Gómez, E. (2005). Symbolic representation of musical chords: A proposed syntax for text annotations. In Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR), pages 6671.
  20. 20Harte, C., Sandler, M., and Gasser, M. (2006). Detecting harmonic change in musical audio. In Proceedings of the 1st ACM Workshop on Audio and Music Computing Multimedia (AMCMM), pages 2126. DOI: 10.1145/1178723.1178727
  21. 21Henschel, J., Neuwirth, M., and Rohrmeier, M. (2021). The annotated Mozart sonatas: Score, harmony, and cadence. Transactions of the International Society for Music Information Retrieval 4(1), 6780. DOI: 10.5334/tismir.63
  22. 22Huron, D. (1993). Chordal tone doubling and the enhancement of key perception. Psychomusicology 12(1), 7383. DOI: 10.1037/h0094115
  23. 23Huron, D. (2006). Sweet Anticipation: Music and the Psychology of Expectation. Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/6575.001.0001
  24. 24Jacoby, N., Tishby, N., and Tymoczko, D. (2015). An information theoretic approach to chord classification and functional harmony. Journal of New Music Research 44(3), 219244. DOI: 10.1080/09298215.2015.1036888
  25. 25Ju, Y., Condit-Schultz, N., Arthur, C., and Fujinaga, I. (2017). Non-chord tone identification using deep neural networks. In DLfM ’17: Proceedings of the 4th International Workshop on Digital Libraries for Musicology, pages 1316. DOI: 10.1145/3144749.3144753
  26. 26Krumhansl, C. (1990). Cognitive Foundations of Musical Pitch. New York: Oxford University Press.
  27. 27Krumhansl, C., and Cuddy, L.L. (2010). A theory of tonal hierarchies in music. In M.R. Jones, R. R. Fay, & A. N. Popper (Eds.), Music Perception. New York: Springer, pages 5187. DOI: 10.1007/978-1-4419-6114-3_3
  28. 28Lieck, R. and Rohrmeier, M. (2020). Modelling hierarchical key structure with pitch scapes. In Proceedings of the 21st International Society for Music Information Retrieval Conference (ISMIR), pages 811818.
  29. 29Mavromatis, P. (2009). Minimum description length modelling of musical structure. Journal of Mathematics and Music 3(3), 117136. DOI: 10.1080/17459730903313122
  30. 30Maxwell, H.J. (1992). An expert system for harmonic analysis of tonal music. In M. Balaban, K. Ebcioglu, and O. Laske (Eds.), Understanding Music with AI: Perspectives on Music Cognition, pages 335353.
  31. 31McFee, B. and Bello, J.P. (2017). Structured training for large-vocabulary chord recognition. Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIR), pages 188194.
  32. 32Micchi, G., Gotham, G., and Giraud, M. (2020). Not all roads lead to Rome: Pitch representation and model architecture for automatic harmonic analysis. Transactions of the International Society for Music Information Retrieval, 3(1), 4254. DOI: 10.5334/tismir.45
  33. 33Moss, F., Neuwirth, M., Harasim, D., and Rohrmeier, M. (2019). Statistical characteristics of tonal harmony: A corpus study of Beethoven’s string quartets. PLoS ONE 14(6), e0217242. DOI: 10.1371/journal.pone.0217242
  34. 34Novarro-Cáceres, M., Caetano, M., Bernardes, G., Sánchez-Barba, M., and Sánchez-Jara, J.M. (2020). A computational model of tonal tension profile of chord progressions in the tonal interval space. Entropy 22: 1291. DOI: 10.3390/e22111291
  35. 35Pardo, B., and Birmingham, W.P. (2002). Algorithms for chordal analysis. Computer Music Journal 26(2), 2749. DOI: 10.1162/014892602760137167
  36. 36Pauwels, J., O’Hanlon, K., Gómez, E., and Sandler, M.B. (2019). 20 years of automatic chord recognition from audio. In Proceedings of the 20th International Conference on Music Information Retrieval (ISMIR), pages 5463.
  37. 37Quinn, I. (2010). Does musical syntax have parts of speech? In Proceedings of the 11th International Conference on Music Perception and Cognition (ICMPC11), Seattle, Washington.
  38. 38Quinn, I., and Mavromatis, P. (2011). Voice leading and harmonic function in two chorale corpora. In C. Agon, M. Andreatta, G. Assayag, E. Amiot, J. Bresson, and J. Mandreau (Eds.), Mathematics and Computation in Music, Third International Conference (MCM2011), pages 230240. DOI: 10.1007/978-3-642-21590-2_18
  39. 39Ramiréz, A., Bernardes, G., Davies, M.E.P., and Serra, X. (2020). TIV.LIB: An open-source library for the tonal description of musical audio. In Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20).
  40. 40Raphael, C. and Stoddard, R. (2004). Functional analysis using probabilistic models. Computer Music Journal 28(3), 4552. DOI: 10.1162/0148926041790676
  41. 41Rohrmeier, M. (2011). Toward a generative syntax of tonal harmony. Journal of Mathematics and Music 5(1), 3553. DOI: 10.1080/17459737.2011.573676
  42. 42Rohrmeier, M., and Cross, I. (2008). Statistical properties of tonal harmony in Bach’s chorales. In Proceedings of the 10th International Conference on Music Perception and Cognition (ICMPC 2008), pages 619627.
  43. 43Sapp, C.S. (2005). Visual hierarchical key analysis. ACM Computers in Entertainment 3(4), 119. DOI: 10.1145/1095534.1095544
  44. 44Sapp, C. S. (2011). Computational Methods for the Analysis of Musical Structure. PhD thesis, Stanford University.
  45. 45Sears, D.R.W., and Forrest, D. (2021). Triadic patterns across classical and popular music corpora: Stylistic conventions, or characteristic idioms? Journal of Mathematics and Music 15(2), 140153. DOI: 10.1080/17459737.2021.1925762
  46. 46Sears, D.R.W., and Widmer, G. (2021). Beneath (or beyond) the surface: Discovering voice-leading patterns with skip-grams. Journal of Mathematics and Music 15(3), 209234. DOI: 10.1080/17459737.2020.1785568
  47. 47Temperley, D. (2001). Cognition of Basic Musical Structures. Cambridge, MA: MIT Press.
  48. 48Temperley, D. (2007). Music and Probability. Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/4807.001.0001
  49. 49Temperley, D. (2009). A Statistical Analysis of Tonal Harmony. http://davidtemperley.com/kp-stats
  50. 50Temperley, D. (2018). The Musical Language of Rock. New York: Oxford University Press. DOI: 10.1093/oso/9780190653774.001.0001
  51. 51Temperley, D. and deClercq, T. (2013). Statistical analysis of harmony and melody in rock music. Journal of New Music Research 42(3), 187204. DOI: 10.1080/09298215.2013.788039
  52. 52Tompkins, D. (2017). Early Seventeenth-Century Harmonic Practice: A Corpus Study of Tonality, Modality, and Harmonic Function in Italian Secular Song with Baroque Guitar Accompaniment in Alfabeto Tablature. PhD thesis, Florida State University.
  53. 53Tymoczko, D. (2003). Function theories: A statistical approach. Musurgia 10(3–4), 3564.
  54. 54Tymoczko, D. (2011). A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice. New York: Oxford University Press.
  55. 55White, C. W. (2013a). An alphabet-reduction algorithm for chordal n-grams. In J. Yust, J. Wild, and J.A. Burgoyne (Eds.), Mathematics and Computation in Music: Fourth International Conference (MCM 2013), pages 201212. DOI: 10.1007/978-3-642-39357-0_16
  56. 56White, C. W. (2013b). Some Statistical Properties of Tonality, 1650–1900. PhD thesis, Yale University.
  57. 57White, C. W. and Quinn, I. (2016). The Yale Classical Archives corpus. Empirical Musicology Review 11, 5058. https://emusicology.org/article/view/4958. DOI: 10.18061/emr.v11i1.4958
  58. 58White, C. W. and Quinn, I. (2018). Chord context and harmonic function in tonal music. Music Theory Spectrum 40(2), 314337. DOI: 10.1093/mts/mty021
  59. 59Winograd, T. (1968). Linguistics and the computer analysis of tonal harmony. Journal of Music Theory 12(1), 249. DOI: 10.2307/842885
  60. 60Viaccoz, C., Harasim, D., Moss, F.C., and Rohrmeier, M. (2022). Wavescapes: A visual hierarchical analysis of tonality using the discrete Fourier transform. Musicae Scientiae. https://journals.sagepub.com/doi/full/10.1177/10298649211034906. DOI: 10.1177/10298649211034906
  61. 61Yust, J. (2017a). Harmonic qualities in Debussy’s “Les sons et les parfums tournent dans l’air du soir.” Journal of Mathematics and Music 11(2–3), 151173. DOI: 10.1080/17459737.2018.1450457
  62. 62Yust, J. (2017b). Probing questions about keys: Tonal distributions through the DFT. In O.A. Agustín-Aquino, E. Lluis-Puebla, and M. Montiel (Eds.), Mathematics and Computation in Music, Sixth International Conference, (MCM 2017), pages 167179. DOI: 10.1007/978-3-319-71827-9_13
  63. 63Yust, J. (2019). Stylistic information in pitch-class distributions. Journal of New Musical Research 48(3), 217231. DOI: 10.1080/09298215.2019.1606833
DOI: https://doi.org/10.5334/tismir.114 | Journal eISSN: 2514-3298
Language: English
Submitted on: May 6, 2021
Accepted on: Jun 7, 2022
Published on: Oct 13, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Jason Yust, Jaeseong Lee, Eugene Pinsky, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.