References
- 1Aarden, B. (2003). Dynamic Melodic Expectancy. PhD thesis, Ohio State University.
- 2Aarden, B., and von Hippel, P. (2004). Rules for chord doubling (and spacing): Which ones do we need? Music Theory Online, 10(2).
https://mtosmt.org/issues/mto.04.10.2/mto.04.10.2.aarden_hippel.html - 3Amiot, E. (2016). Music through Fourier space: Discrete Fourier transform in music theory. Cham: Springer. DOI: 10.1007/978-3-319-45581-5
- 4Bernardes, G., Cocharro, D., Caetano, M., Guedes, C., and Davies, M.E.P. (2016). A multi-level tonal interval space for modelling pitch relatedness and musical consonance. Journal of New Music Research 45(4), 281–294. DOI: 10.1080/09298215.2016.1182192
- 5Burgoyne, J.A., Wild, J., and Fujinaga, I. (2013). Compositional data analysis of harmonic structures in popular music. In Yust, J., Wild, J., & Burgoyne, J.A. (Eds.) Mathematics and Computation in Music: Fourth International Conference, MCM 2013, pages 52–63. DOI: 10.1007/978-3-642-39357-0_4
- 6Chen, T-P., and Su, L. (2018). Functional harmony recognition of symbolic music data with multi-task recurrent neural networks. In Proceedings of the 19th International Conference on Music Information Retrieval (ISMIR), pages 90–97.
- 7Chen, T-P., and Su, L. (2019). Harmony transformer: Incorporating chord segmentation into harmony recognition. In Proceedings of the 20th International Conference on Music Information Retrieval (ISMIR), pages 259–267.
- 8Chiu, M. (2021) Macroharmonic progressions through the discrete Fourier transform: An analysis of Maurice Duruflé’s Requiem. Music Theory Online 27(3). DOI: 10.30535/mto.27.3.1
- 9Conklin, D. (2002) Representation and discovery of vertical patterns in music. In C. Anagnostopoulou, M. Ferrand, and A. Smaill (Eds.), Music and Artificial Intelligence: Second International Conference (ICMAI 2002), pages 32–42. DOI: 10.1007/3-540-45722-4_5
- 10Cuddy, L. L., and Badertscher, B. (1987). Recovery of the tonal hierarchy: Some comparisons across age and levels of musical experience. Perception & Psychophysics 41, 609–20. DOI: 10.3758/BF03210493
- 11Deng, J., and Kwok, Y.-K. (2016). A hybrid Gaussian-HMM-deep-learning approach for automatic chord estimation with very large vocabulary. In Proceedings of the 17th International Society for Music Information Retrieval (ISMIR), pages 812–818.
- 12DeClercq, T. (2016). Big data, big questions, a closer look at the Yale Classical Archives (c. 2015). Empirical Musicology Review 11(1).
https://emusicology.org/article/view/5274 . DOI: 10.18061/emr.v11i1.5274 - 13DeClercq, T. and Temperley, D. (2011). A corpus analysis of rock harmony. Popular Music 30, 47–70. DOI: 10.1017/S026114301000067X
- 14Devaney, J., Arthur, C., Condit-Schultz, N., and Nisula, K. (2015). Theme and variation encodings with Roman numerals (TAVERN): A new data set for symbolic music analysis. In Proceedings of the 16th International Conference for Music Information Retrieval (ISMIR), pages 278–234.
- 15Duane, B., and Jakubowski, J. (2018). Harmonic clusters and tonal cadences: Bayesian learning without chord identification. Journal of New Music Research 47(2), 143–165. DOI: 10.1080/09298215.2017.1410181
- 16Harasim, D., Affatato, G., and Moss, F.C. (2022). midiVERTO: A web application to visualize tonality in real time. In Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., and Milam, B. (Eds.), Mathematics and Computation in Music: 8th International Conference (MCM 2022), pages 363–368. DOI: 10.1007/978-3-031-07015-0_31
- 17Harding, J.D. (2020). Computer-aided analysis across the tonal divide: Cross-stylistic applications of the discrete Fourier transform. In de Luca, E. and Flanders, J. (Eds.), Music Encoding Conference Proceedings 2020, pages 95–104.
- 18Harding, J.D. (2021). Applications of the Discrete Fourier Transform to Music Analysis. PhD thesis, University of Florida.
- 19Harte, C., Sandler, M.B., Abdallah, S.A, and Gómez, E. (2005). Symbolic representation of musical chords: A proposed syntax for text annotations. In Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR), pages 66–71.
- 20Harte, C., Sandler, M., and Gasser, M. (2006). Detecting harmonic change in musical audio. In Proceedings of the 1st ACM Workshop on Audio and Music Computing Multimedia (AMCMM), pages 21–26. DOI: 10.1145/1178723.1178727
- 21Henschel, J., Neuwirth, M., and Rohrmeier, M. (2021). The annotated Mozart sonatas: Score, harmony, and cadence. Transactions of the International Society for Music Information Retrieval 4(1), 67–80. DOI: 10.5334/tismir.63
- 22Huron, D. (1993). Chordal tone doubling and the enhancement of key perception. Psychomusicology 12(1), 73–83. DOI: 10.1037/h0094115
- 23Huron, D. (2006). Sweet Anticipation: Music and the Psychology of Expectation. Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/6575.001.0001
- 24Jacoby, N., Tishby, N., and Tymoczko, D. (2015). An information theoretic approach to chord classification and functional harmony. Journal of New Music Research 44(3), 219–244. DOI: 10.1080/09298215.2015.1036888
- 25Ju, Y., Condit-Schultz, N., Arthur, C., and Fujinaga, I. (2017). Non-chord tone identification using deep neural networks. In DLfM ’17: Proceedings of the 4th International Workshop on Digital Libraries for Musicology, pages 13–16. DOI: 10.1145/3144749.3144753
- 26Krumhansl, C. (1990). Cognitive Foundations of Musical Pitch. New York: Oxford University Press.
- 27Krumhansl, C., and Cuddy, L.L. (2010).
A theory of tonal hierarchies in music . In M.R. Jones, R. R. Fay, & A. N. Popper (Eds.), Music Perception. New York: Springer, pages 51–87. DOI: 10.1007/978-1-4419-6114-3_3 - 28Lieck, R. and Rohrmeier, M. (2020). Modelling hierarchical key structure with pitch scapes. In Proceedings of the 21st International Society for Music Information Retrieval Conference (ISMIR), pages 811–818.
- 29Mavromatis, P. (2009). Minimum description length modelling of musical structure. Journal of Mathematics and Music 3(3), 117–136. DOI: 10.1080/17459730903313122
- 30Maxwell, H.J. (1992). An expert system for harmonic analysis of tonal music. In M. Balaban, K. Ebcioglu, and O. Laske (Eds.), Understanding Music with AI: Perspectives on Music Cognition, pages 335–353.
- 31McFee, B. and Bello, J.P. (2017). Structured training for large-vocabulary chord recognition. Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIR), pages 188–194.
- 32Micchi, G., Gotham, G., and Giraud, M. (2020). Not all roads lead to Rome: Pitch representation and model architecture for automatic harmonic analysis. Transactions of the International Society for Music Information Retrieval, 3(1), 42–54. DOI: 10.5334/tismir.45
- 33Moss, F., Neuwirth, M., Harasim, D., and Rohrmeier, M. (2019). Statistical characteristics of tonal harmony: A corpus study of Beethoven’s string quartets. PLoS ONE 14(6),
e0217242 . DOI: 10.1371/journal.pone.0217242 - 34Novarro-Cáceres, M., Caetano, M., Bernardes, G., Sánchez-Barba, M., and Sánchez-Jara, J.M. (2020). A computational model of tonal tension profile of chord progressions in the tonal interval space. Entropy 22: 1291. DOI: 10.3390/e22111291
- 35Pardo, B., and Birmingham, W.P. (2002). Algorithms for chordal analysis. Computer Music Journal 26(2), 27–49. DOI: 10.1162/014892602760137167
- 36Pauwels, J., O’Hanlon, K., Gómez, E., and Sandler, M.B. (2019). 20 years of automatic chord recognition from audio. In Proceedings of the 20th International Conference on Music Information Retrieval (ISMIR), pages 54–63.
- 37Quinn, I. (2010). Does musical syntax have parts of speech? In Proceedings of the 11th International Conference on Music Perception and Cognition (ICMPC11), Seattle, Washington.
- 38Quinn, I., and Mavromatis, P. (2011). Voice leading and harmonic function in two chorale corpora. In C. Agon, M. Andreatta, G. Assayag, E. Amiot, J. Bresson, and J. Mandreau (Eds.), Mathematics and Computation in Music, Third International Conference (MCM2011), pages 230–240. DOI: 10.1007/978-3-642-21590-2_18
- 39Ramiréz, A., Bernardes, G., Davies, M.E.P., and Serra, X. (2020). TIV.LIB: An open-source library for the tonal description of musical audio. In Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20).
- 40Raphael, C. and Stoddard, R. (2004). Functional analysis using probabilistic models. Computer Music Journal 28(3), 45–52. DOI: 10.1162/0148926041790676
- 41Rohrmeier, M. (2011). Toward a generative syntax of tonal harmony. Journal of Mathematics and Music 5(1), 35–53. DOI: 10.1080/17459737.2011.573676
- 42Rohrmeier, M., and Cross, I. (2008). Statistical properties of tonal harmony in Bach’s chorales. In Proceedings of the 10th International Conference on Music Perception and Cognition (ICMPC 2008), pages 619–627.
- 43Sapp, C.S. (2005). Visual hierarchical key analysis. ACM Computers in Entertainment 3(4), 1–19. DOI: 10.1145/1095534.1095544
- 44Sapp, C. S. (2011). Computational Methods for the Analysis of Musical Structure. PhD thesis, Stanford University.
- 45Sears, D.R.W., and Forrest, D. (2021). Triadic patterns across classical and popular music corpora: Stylistic conventions, or characteristic idioms? Journal of Mathematics and Music 15(2), 140–153. DOI: 10.1080/17459737.2021.1925762
- 46Sears, D.R.W., and Widmer, G. (2021). Beneath (or beyond) the surface: Discovering voice-leading patterns with skip-grams. Journal of Mathematics and Music 15(3), 209–234. DOI: 10.1080/17459737.2020.1785568
- 47Temperley, D. (2001). Cognition of Basic Musical Structures. Cambridge, MA: MIT Press.
- 48Temperley, D. (2007). Music and Probability. Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/4807.001.0001
- 49Temperley, D. (2009). A Statistical Analysis of Tonal Harmony.
http://davidtemperley.com/kp-stats - 50Temperley, D. (2018). The Musical Language of Rock. New York: Oxford University Press. DOI: 10.1093/oso/9780190653774.001.0001
- 51Temperley, D. and deClercq, T. (2013). Statistical analysis of harmony and melody in rock music. Journal of New Music Research 42(3), 187–204. DOI: 10.1080/09298215.2013.788039
- 52Tompkins, D. (2017). Early Seventeenth-Century Harmonic Practice: A Corpus Study of Tonality, Modality, and Harmonic Function in Italian Secular Song with Baroque Guitar Accompaniment in Alfabeto Tablature. PhD thesis, Florida State University.
- 53Tymoczko, D. (2003). Function theories: A statistical approach. Musurgia 10(3–4), 35–64.
- 54Tymoczko, D. (2011). A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice. New York: Oxford University Press.
- 55White, C. W. (2013a). An alphabet-reduction algorithm for chordal n-grams. In J. Yust, J. Wild, and J.A. Burgoyne (Eds.), Mathematics and Computation in Music: Fourth International Conference (MCM 2013), pages 201–212. DOI: 10.1007/978-3-642-39357-0_16
- 56White, C. W. (2013b). Some Statistical Properties of Tonality, 1650–1900. PhD thesis, Yale University.
- 57White, C. W. and Quinn, I. (2016). The Yale Classical Archives corpus. Empirical Musicology Review 11, 50–58.
https://emusicology.org/article/view/4958 . DOI: 10.18061/emr.v11i1.4958 - 58White, C. W. and Quinn, I. (2018). Chord context and harmonic function in tonal music. Music Theory Spectrum 40(2), 314–337. DOI: 10.1093/mts/mty021
- 59Winograd, T. (1968). Linguistics and the computer analysis of tonal harmony. Journal of Music Theory 12(1), 2–49. DOI: 10.2307/842885
- 60Viaccoz, C., Harasim, D., Moss, F.C., and Rohrmeier, M. (2022). Wavescapes: A visual hierarchical analysis of tonality using the discrete Fourier transform. Musicae Scientiae.
https://journals.sagepub.com/doi/full/10.1177/10298649211034906 . DOI: 10.1177/10298649211034906 - 61Yust, J. (2017a). Harmonic qualities in Debussy’s “Les sons et les parfums tournent dans l’air du soir.” Journal of Mathematics and Music 11(2–3), 151–173. DOI: 10.1080/17459737.2018.1450457
- 62Yust, J. (2017b). Probing questions about keys: Tonal distributions through the DFT. In O.A. Agustín-Aquino, E. Lluis-Puebla, and M. Montiel (Eds.), Mathematics and Computation in Music, Sixth International Conference, (MCM 2017), pages 167–179. DOI: 10.1007/978-3-319-71827-9_13
- 63Yust, J. (2019). Stylistic information in pitch-class distributions. Journal of New Musical Research 48(3), 217–231. DOI: 10.1080/09298215.2019.1606833
