Have a personal or library account? Click to login
On Creativity, Music’s AI Completeness, and Four Challenges for Artificial Musical Creativity Cover

On Creativity, Music’s AI Completeness, and Four Challenges for Artificial Musical Creativity

Open Access
|Mar 2022

References

  1. 1Adams, S. S., Arel, I., Bach, J., Coop, R., Furlan, R., Goertzel, B., Hall, J. S., Samsonovich, A., Scheutz, M., Schlesinger, M., Shapiro, S. C., and Sowa, J. F. (2012). Mapping the landscape of humanlevel artificial general intelligence. AI Magazine, 33(1):2542. DOI: 10.1609/aimag.v33i1.2322
  2. 2Agres, K., Forth, J., and Wiggins, G. A. (2016). Evaluation of musical creativity and musical metacreation systems. Computers in Entertainment, 14(3):133. DOI: 10.1145/2967506
  3. 3Allan, M. and Williams, C. (2005). Harmonising chorales by probabilistic inference. In Weiss, Y., Schölkopf, B., and Platt, J. C., editors, Advances in Neural Information Processing Systems (NIPS), pages 2532.
  4. 4Ariza, C. (2009). The interrogator as critic: The Turing Test and the evaluation of generative music systems. Computer Music Journal, 33(2):4870. DOI: 10.1162/comj.2009.33.2.48
  5. 5Bach, J. (2009). Principles of Synthetic Intelligence PSI: An Architecture of Motivated Cognition. Oxford University Press, Oxford. DOI: 10.1093/acprof:oso/9780195370676.001.0001
  6. 6Barron, F. (1955). The disposition towards originality. Journal of Abnormal and Social Psychology, 51:478485. DOI: 10.1037/h0048073
  7. 7Bauman, T. (2004). Becoming original: Haydn and the cult of genius. The Musical Quarterly, 87(2):333357. DOI: 10.1093/musqtl/gdh014
  8. 8Ben-Tal, O., Harris, M. T., and Sturm, B. L. (2020). How music AI is useful: Engagements with composers, performers, and audiences. Leonardo, pages 113.
  9. 9Bieri, P. (2001). Das Handwerk der Freiheit: Über die Entdeckung des eigenen Willens. Carl Hanser, München.
  10. 10Binsted, K. (1996). Machine Humour: An Implemented Model of Puns. PhD thesis, University of Edinburgh.
  11. 11Boden, M. (2004). The Creative Mind: Myths and Mechanisms. Routledge, London, UK. DOI: 10.4324/9780203508527
  12. 12Bringsjord, S., Bello, P., and Ferrucci, D. (2001). Creativity, the Turing Test, and the (better) Lovelace Test. Minds and Machines, 11(1):327. DOI: 10.1023/A:1011206622741
  13. 13Brown, O. (2021). Sociocultural and design perspectives on AI-based music production: Why do we make music and what changes if AI makes it for us? In Miranda, E. R., editor, Handbook of Artificial Intelligence for Music: Foundations, Advanced Approaches, and Developments for Creativity, pages 120. Springer, Cham, CH. DOI: 10.1007/978-3-030-72116-9_1
  14. 14Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language models are few-shot learners. In 34th Conference on Neural Information Processing Systems (NeurIPS).
  15. 15Carnovalini, F. and Rodà, A. (2020). Computational creativity and music generation systems: An introduction to the state of the art. Frontiers in Artificial Intelligence, 3(14). DOI: 10.3389/frai.2020.00014
  16. 16Cecchetti, G., Herff, S. A., Finkensiep, C., and Rohrmeier, M. A. (2020). The experience of musical structure as computation: What can we learn? Rivista di Analisi e Teoria Musicale, 26(2):91127.
  17. 17Christiansen, M. H. and Chater, N. (2008). Language as shaped by the brain. The Behavioral and Brain Sciences, 31(5):489508. DOI: 10.1017/S0140525X08004998
  18. 18Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of Mathematics, 58:34363. DOI: 10.2307/2371045
  19. 19Clark, A. (2008). Supersizing the Mind: Embodiment, Action, and Cognitive Extension. Oxford University Press, Oxford.
  20. 20Clarke, E. F. (2008). Ways of Listening: An Ecological Approach to the Perception of Musical Meaning. Oxford University Press, Oxford.
  21. 21Clayton, M. (2005). Observing entrainment in Indian music performance: Video-based observational analysis of tanpura playing and beat marking. Musicae Scientiae, 11(1):2760. DOI: 10.1177/102986490701100102
  22. 22Cohen, H. (1999). Colouring without seeing: A problem in machine creativity. AISB Quarterly, 102:2635.
  23. 23Colton, S., Charnley, J., and Pease, A. (2011). Computational creativity theory: The FACE and IDEA descriptive models. In Ventura, D., Gervás, P., Harrell, D., Maher, M. L., Pease, A., and Wiggins, G., editors, Proceedings of the 2nd International Conference on Computational Creativity (ICCC), pages 9095, Mexico City.
  24. 24Colton, S. and Wiggins, G. A. (2012). Computational creativity: The final frontier? Frontiers in Artificial Intelligence and Applications, 242:2126.
  25. 25Cope, D. (2005). Computer Models of Musical Creativity. MIT Press, Cambridge, MA.
  26. 26Cross, I. (2003). Music and biocultural evolution. In Clayton, M., Herbert, T., and Middleton, R., editors, The Cultural Study of Music: A Critical Introduction, pages 1930. Routledge, New York, NY.
  27. 27Cross, I. (2013). “Does not compute”? Music as realtime communicative interaction. AI and Society, 28(4):415430. DOI: 10.1007/s00146-013-0511-x
  28. 28Csikszentmihalyi, M. (1991). Society, culture and person: A systems view of creativity. In Sternberg, R. J., editor, The Nature of Creativity: Contemporary Psychological Perspectives, pages 325340. Cambridge University Press, Cambridge, UK.
  29. 29Csikszentmihalyi, M. (1996). Creativity: Flow and the Psychology of Discovery and Invention. Harper Collins Publishers, New York.
  30. 30Cunningham, S. (2000). What Is a Mind? An Integrative Introduction to the Philosophy of Mind. Hackett Publishing Company, Inc., Indianapolis, IN.
  31. 31Dahlhaus, C. (1991). The Idea of Absolute Music. University of Chicago Press, Chicago. DOI: 10.2307/431491
  32. 32Daniel, T. (2000). Der Choralsatz bei Bach und seinen Zeitgenossen: Eine historische Satzlehre. Dohr, Köln.
  33. 33Dawkins, R. (1990). The Blind Watchmaker. Penguin Books, London, UK.
  34. 34de Sousa, F. C. (2008). Still the elusive definition of creativity. International Journal of Psychology, 2:5582.
  35. 35Dennett, D. C. (1971). Intentional systems. The Journal of Philosophy, 68(4):87106. DOI: 10.2307/2025382
  36. 36Dennett, D. C. (2008). Kinds of Minds: Toward an Understanding of Consciousness. Basic Books, New York, NY.
  37. 37Ebcioglu, K. (1992). An expert system for harmonizing chorales in the style of J. S. Bach. In Balaban, M., Ebcioglu, K., and Laske, O., editors, Understanding Music With AI: Perspectives on Music Cognition, pages 294333. MIT Press, Cambridge, Massachusetts.
  38. 38Eco, U. (1976). A Theory of Semiotics. Indiana University Press, Bloomington, Indiana. DOI: 10.1007/978-1-349-15849-2
  39. 39Eitan, Z. and Timmers, R. (2010). Beethoven’s last piano sonata and those who follow crocodiles: Crossdomain mappings of auditory pitch in a musical context. Cognition, 114(3):405422. DOI: 10.1016/j.cognition.2009.10.013
  40. 40Fauconnier, G. and Turner, M. (2002). The Way We Think: Conceptual Blending And The Mind’s Hidden Complexities. Basic Books, New York.
  41. 41Fernández, J. D. and Vico, F. (2013). AI methods in algorithmic composition: A comprehensive survey. Journal of Artificial Intelligence Research, 48:513582. DOI: 10.1613/jair.3908
  42. 42Finkensiep, C., Widdess, R., and Rohrmeier, M. (2019). Modelling the syntax of north Indian melodies with a generalized graph grammar. In Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR), pages 426469.
  43. 43Gifford, T., Knotts, S., McCormack, J., Kalonaris, S., Yee-King, M., and d’Inverno, M. (2018). Computational systems for music improvisation. Digital Creativity, 29(1):1936. DOI: 10.1080/14626268.2018.1426613
  44. 44Glymour, C. (2015). Thinking Things Through: An Introduction to Philosophical Issues and Achievements. MIT Press, Cambridge, MA, second edition.
  45. 45Goehr, L. (1992). The Imaginary Museum of Musical Works: An Essay in the Philosophy of Music. Clarendon Press, Oxford/New York.
  46. 46Guilford, J. P. (1967). The Nature of Human Intelligence. McGraw-Hill.
  47. 47Guo, Z., Makris, D., and Herremans, D. (2021). Hierarchical recurrent neural networks for conditional melody generation with long-term structure. In Proceedings of the International Joint Conference on Neural Networks (IJCNN).
  48. 48Hadjeres, G., Pachet, F., and Nielsen, F. (2017). Deep-Bach: A steerable model for Bach chorales generation. 34th International Conference on Machine Learning, ICML 2017, 3:21872196.
  49. 49Hanslick, E. (1854). Vom Musikalisch-Schönen: Ein Beitrag zur Revision der Ästhetik der Tonkunst (The Beautiful in Music: A Contribution to the Revision of Musical Æsthetics). Weigel, Leipzig.
  50. 50Hepokoski, J. and Darcy, W. (2006). Elements of Sonata Theory: Norms, Types, and Deformations in the Late-Eighteenth-Century Sonata. Oxford University Press, Oxford. DOI: 10.1093/acprof:oso/9780195146400.001.0001
  51. 51Higham, T., Basell, L., Jacobi, R., Wood, R., Ramsey, C. B., and Conard, N. J. (2012). Testing models for the beginnings of the Aurignacian and the advent of figurative art and music: The radiocarbon chronology of Geißenklösterle. Journal of Human Evolution, 62(6):664676. DOI: 10.1016/j.jhevol.2012.03.003
  52. 52Hiller, L. (1970). Music composed with computers –a historical survey. In Lincoln, H. B., editor, The Computer and Music, pages 4296. Cornell University Press., Cornell, USA. DOI: 10.7591/9781501744167-007
  53. 53Hofstadter, D. (1995). Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought. Basic Books, New York, NY.
  54. 54Hofstadter, D. R. (1979). Gödel, Escher, Bach: An Eternal Golden Braid. Penguin, London, UK.
  55. 55Holland, S., Mudd, T., Wilkie-McKenna, K., McPherson, A., and Wanderley, M. M. (2019). New Directions in Music and Human-Computer Interaction. Springer, Cham, CH. DOI: 10.1007/978-3-319-92069-6
  56. 56Holzapfel, A., Sturm, B. L., and Coeckelbergh, M. (2018). Ethical dimensions of music information retrieval technology. Transactions of the International Society for Music Information Retrieval, 1(1):4455. DOI: 10.5334/tismir.13
  57. 57Honing, H. (2018). The Origins of Musicality. MIT Press, Cambridge, MA. DOI: 10.7551/mitpress/10636.001.0001
  58. 58Huang, C. Z. A., Hawthorne, C., Roberts, A., Dinculescu, M., Wexler, J., Hong, L., and Howcroft, J. (2019). Bach Doodle: Approachable music composition with machine learning at scale. In Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIR), pages 793800.
  59. 59Hurley, M. M., Dennett, D. C., and Adams, R. B. (2011). Inside Jokes: Using Humor to Reverse-Engineer the Mind. MIT Press, Cambridge, MA. DOI: 10.7551/mitpress/9027.001.0001
  60. 60Huron, D. (2001). Is music an evolutionary adaptation? Annals of the New York Academy of Sciences, 930:4361. DOI: 10.1111/j.1749-6632.2001.tb05724.x
  61. 61Huron, D. (2006). Sweet Anticipation: Music and the Psychology of Expectation. MIT Press, Cambridge, MA. DOI: 10.7551/mitpress/6575.001.0001
  62. 62Huron, D. (2016). Voice Leading: The Science Behind a Musical Art. The MIT Press, Cambridge, MA. DOI: 10.7551/mitpress/9780262034852.001.0001
  63. 63Huron, D. and Sellmer, P. (1992). Critical bands and the spelling of vertical sonorities. Music Perception, 10(2):129149. DOI: 10.2307/40285604
  64. 64Iñesta, J. M., Conklin, D., and Ramírez, R. (2016). Machine learning and music generation. Journal of Mathematics and Music, 10(2):8791. DOI: 10.1080/17459737.2016.1216369
  65. 65Iqbal, A. (2006). Computing the aesthetics of chess. In AAAI Workshop on Computational Aesthetics, Boston, MA. AAAI Press.
  66. 66Iqbal, A. and Yaacob, M. (2006). A systematic and discrete view of aesthetics in chess. Journal of Comparative Literature and Aesthetics, 29(1–2):5365.
  67. 67Jackendoff, R. (2007). Language, Consciousness, Culture: Essays on Mental Structure. MIT Press, Cambridge, MA. DOI: 10.7551/mitpress/4111.001.0001
  68. 68Jackendoff, R. and Lerdahl, F. (2006). The capacity for music: What is it, and what’s special about it? Cognition, 100:3372. DOI: 10.1016/j.cognition.2005.11.005
  69. 69Jankélévitch, V. (1961). La musique et l’ineffable. Éditions Armand Collin, Paris.
  70. 70Jordanous, A. (2012). A standardised procedure for evaluating creative systems: Computational creativity evaluation based on what it is to be creative. Cognitive Computation, 4(3):246279. DOI: 10.1007/s12559-012-9156-1
  71. 71Kaliakatsos-Papakostas, M. and Queiroz, M. (2017). Conceptual blending of harmonic spaces for creative melodic harmonisation. Journal of New Music Research, 46(4):305328. DOI: 10.1080/09298215.2017.1355393
  72. 72Kant, I. (1790). Kritik der Urteilskraft. Lagarde und Friedrich, Berlin and Libau.
  73. 73Kippen, J. (1992). Tabla drumming and the human-computer interaction. The World of Music, 34(3):7298.
  74. 74Kirke, A. and Miranda, E. R. (2009). A survey of computer systems for expressive music performance. ACM Computing Surveys, 42(1). DOI: 10.1145/1592451.1592454
  75. 75Kitts, T. M. and Baxter-Moore, N., editors (2019). The Routledge Companion to Popular Music and Humor. Routledge, New York, NY. DOI: 10.4324/9781351266642
  76. 76Koelsch, S. (2011). Towards a neural basis of processing musical semantics. Physics of Life Reviews, 8(2):89105. DOI: 10.1016/j.plrev.2011.04.004
  77. 77Koelsch, S. (2012). Brain and Music. John Wiley & Sons, Oxford.
  78. 78Koelsch, S. and Jäncke, L. (2015). Music and the heart. European Heart Journal, 36(44):30433049. DOI: 10.1093/eurheartj/ehv430
  79. 79Koelsch, S., Rohrmeier, M., Torrecuso, R., and Jentschke, S. (2013). Processing of hierarchical syntactic structure in music. Proceedings of the National Academy of Sciences of the United States of America, 110(38):1544315448. DOI: 10.1073/pnas.1300272110
  80. 80Korsakova-Kreyn, M. (2018). Two-level model of embodied cognition in music. Psychomusicology: Music, Mind, and Brain, 28(4):240259. DOI: 10.1037/pmu0000228
  81. 81Lakoff, G. (1989). Women, Fire, and Dangerous Things: What Categories Reveal about the Mind. University of Chicago Press, Chicago.
  82. 82Lakoff, G. and Johnson, M. (2003). Metaphors We Live By. University of Chicago Press, Chicago. DOI: 10.7208/chicago/9780226470993.001.0001
  83. 83Le Guin, E. (2005). Boccherini’s Body: An Essay in Carnal Musicology. University of California Press, Berkeley. DOI: 10.1525/california/9780520240179.001.0001
  84. 84Levin, J. (2018). Functionalism. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall 2018 edition.
  85. 85List, C. (2019). Why Free Will Is Real. Harvard University Press, Cambridge, MA. DOI: 10.4159/9780674239807
  86. 86Loughran, R. and O’Neill, M. (2017). Limitations from assumptions in generative music evaluation. Journal of Creative Music Systems, 2. DOI: 10.5920/JCMS.2017.12
  87. 87Loughran, R. and O’Neill, M. (2020). Evolutionary music: Applying evolutionary computation to the art of creating music. Genetic Programming and Evolvable Machines, 21:5585. DOI: 10.1007/s10710-020-09380-7
  88. 88Lovelace, A. (1842). Translator’s notes to an article on Babbage’s Analytical Engine. In Taylor, R., editor, Scientific Memoirs: Selected from the Transactions of Foreign Academies of Science and Learned Societies, and from Foreign Journals, pages 691731. Richard and John E. Taylor, London, UK, 3rd edition.
  89. 89Luhmann, N. (1995). Social Systems. Stanford University Press, Stanford.
  90. 90Luhmann, N. (2000). Art as a Social System. Stanford University Press, Stanford. DOI: 10.1515/9781503618763
  91. 91Marsden, A. (2000). Music, intelligence and artificiality. In Miranda, E. R., editor, Readings in Music and Artificial Intelligence, pages 1528. Harwood Academic Publishers, Amsterdam. DOI: 10.1007/978-1-4613-9080-0
  92. 92Marsland, T. A. and Schaeffer, J., editors (1990). Computers, Chess, and Cognition. Springer, New York. DOI: 10.1007/978-94-009-8947-4
  93. 93Maturana, H. R. H. and Varela, F. F. J. (1980). Autopoiesis and Cognition: The Realization of the Living. Reidel Publishing Company, Dordrecht, NL.
  94. 94Meyer, L. B. (1996). Style and Music: Theory, History, and Ideology. University of Chicago Press, Chicago.
  95. 95Milewski, B. (2018). Category Theory for Programmers. Blurb Books, London, UK.
  96. 96Miranda, E. R. (2021). Handbook of Artificial Intelligence for Music: Foundations, Advanced Approaches, and Developments for Creativity. Springer, Cham, CH. DOI: 10.1007/978-3-030-72116-9
  97. 97Mitchell, M. (2021). Why AI is harder than we think. arXiv preprint, arXiv:2104.12871v2. DOI: 10.1145/3449639.3465421
  98. 98Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M. (2013). Playing Atari with deep reinforcement learning. In NIPS Deep Learning Workshop. arXiv preprint, arXiv:1312.5602
  99. 99Moran, N. (2013). Music, bodies and relationships: An ethnographic contribution to embodied cognition studies. Psychology of Music, 41(1):517. DOI: 10.1177/0305735611400174
  100. 100Mordvintsev, A., Olah, C., and Tyka, M. (2015). Inceptionism: Going deeper into neural networks. In Google Research Blog, https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
  101. 101Morley, I. (2013). The Prehistory of Music: Human Evolution, Archaeology, and the Origins of Musicality. Oxford University Press, Oxford. DOI: 10.1093/acprof:osobl/9780199234080.001.0001
  102. 102Nattiez, J. J. (1990). Music and Discourse: Toward a Semiology of Music. Princeton University Press, Princeton.
  103. 103Papadopoulos, A., Roy, P., and Pachet, F. (2016). Assisted lead sheet composition using FlowComposer. In International Conference on Principles and Practice of Constraint Programming, pages 769785. Springer, Cham. DOI: 10.1007/978-3-319-44953-1_48
  104. 104Pearce, M. and Rohrmeier, M. (2012). Music cognition and the cognitive sciences. Topics in Cognitive Science, 4(4):468484. DOI: 10.1111/j.1756-8765.2012.01226.x
  105. 105Peretz, I. (2006). The nature of music from a biological perspective. Cognition, 100(1):132. DOI: 10.1016/j.cognition.2005.11.004
  106. 106Peretz, I. and Zatorre, R. J. (2005). Brain organization for music processing. Annual Review of Psychology, 56:89114. DOI: 10.1146/annurev.psych.56.091103.070225
  107. 107Polth, M. (2001). Nicht System – Nicht Resultat: Zur Bestimmung von harmonischer Tonalität. Musik & Ästhetik, 5(2):1236.
  108. 108Putnam, H. (1967). Psychological predicates. In Capitan, W. H. and Merrill, D. D., editors, Art, Mind, and Religion, pages 3748. University of Pittsburgh Press, Pittsburgh, PA.
  109. 109Quick, D. and Hudak, P. (2013). Grammar-based automated music composition in Haskell. Proceedings of the First ACM SIGPLAN Workshop on Functional Art, Music, Modeling & Design (FARM), pages 5970. DOI: 10.1145/2505341.2505345
  110. 110Rhodes, M. (1961). An analysis of creativity. The Phi Delta Kappan, 42:305310.
  111. 111Ritchie, G. (2001). Assessing creativity. In Colton, S., editor, Proceedings of the AISB01 Symposium on Artificial Intelligence and Creativity in the Arts and Sciences, York. University of York.
  112. 112Roberts, A., Engel, J., Raffel, C., Hawthorne, C., and Eck, D. (2018). A hierarchical latent vector model for learning long-term structure in music. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden.
  113. 113Rohrmeier, M. (2013). Musical expectancy: Bridging music theory, cognitive and computational approaches. Zeitschrift der Gesellschaft für Musiktheorie, 10(2):343371. DOI: 10.31751/724
  114. 114Rohrmeier, M. (2020a). The syntax of jazz harmony: Diatonic tonality, phrase structure, and form. Music Theory and Analysis, 7(1):163. DOI: 10.11116/MTA.7.1.1
  115. 115Rohrmeier, M. (2020b). Towards a formalization of musical rhythm. In Proceedings of the 21st International Society for Music Information Retrieval Conference, pages 621629.
  116. 116Rohrmeier, M. and Pearce, M. (2018). Musical syntax I: Theoretical perspectives. In Bader, R., editor, Springer Handbook of Systematic Musicology, pages 473486. Springer, Berlin and Heidelberg. DOI: 10.1007/978-3-662-55004-5_25
  117. 117Rohrmeier, M. A. and Koelsch, S. (2012). Predictive information processing in music cognition: A critical review. International Journal of Psychophysiology, 83(2):164175. DOI: 10.1016/j.ijpsycho.2011.12.010
  118. 118Roth, M. (1998). Organisationsformen vielstimmiger Polyphonie: Thomas Tallis’ Motette Spem in alium nunquam habui. Musik & Ästhetik, 2(7):520.
  119. 119Runco, M. A. and Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1):9296. DOI: 10.1080/10400419.2012.650092
  120. 120Russell, S. and Norvig, P. (2021). Artificial Intelligence: A Modern Approach. Pearson, Boston, MA, 4th edition.
  121. 121Sadler, M. and Regan, N. (2019). Game Changer. AlphaZero’s Groundbreaking Chess Strategies and the Promise of AI. New in Chess.
  122. 122Sarkar, P. and Chakrabarti, A. (2011). Assessing design creativity. Design Studies, 32(4):348383. DOI: 10.1016/j.destud.2011.01.002
  123. 123Schiavio, A. and Benedek, M. (2020). Dimensions of musical creativity. Frontiers in Neuroscience, 14(578932). DOI: 10.3389/fnins.2020.578932
  124. 124Schiavio, A., Menin, D., and M., J. (2014). Music in the flesh: Embodied simulation in musical understanding. Psychomusicology: Music, Mind, and Brain, 24(4):340343. DOI: 10.1037/pmu0000052
  125. 125Schimmel, C. (2014). Music. In Attardo, S., editor, Encyclopedia of Humor Studies, pages 528534. Sage, London.
  126. 126Schlenker, P. (2017). Outline of music semantics. Music Perception, 35(1):337. DOI: 10.1525/mp.2017.35.1.3
  127. 127Schlenker, P. (2019). Prolegomena to music semantics. Review of Philosophy and Psychology, 10(1):35111. DOI: 10.1007/s13164-018-0384-5
  128. 128Schmalfeldt, J. (1992). Cadential processes: The evaded cadence and the “one more time” technique. Journal of Musicological Research, 12(1–2):152. DOI: 10.1080/01411899208574658
  129. 129Searle, J. (1980). Minds, brains and programs. Behavioral and Brain Sciences, 3(3):417457. DOI: 10.1017/S0140525X00005756
  130. 130Shuker, R. (2013). Understanding Popular Music. Routledge, London and New York. DOI: 10.4324/9780203188019
  131. 131Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., and Hassabis, D. (2018). A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):11401144. DOI: 10.1126/science.aar6404
  132. 132Stein, M. I. (1953). Creativity and culture. Journal of Psychology, 36:311322. DOI: 10.1080/00223980.1953.9712897
  133. 133Stobart, H. and Cross, I. (2000). The Andean anacrusis? Rhythmic structure and perception in Easter songs of Northern Potosí, Bolivia. British Journal of Ethnomusicology, 9(2):6392. DOI: 10.1080/09681220008567301
  134. 134Sturm, B. L., Ben-Tal, O., Monaghan, U., Collins, N., Herremans, D., Chew, E., Hadjeres, G., Deruty, E., and Pachet, F. (2019a). Machine learning research that matters for music creation: A case study. Journal of New Music Research, 48(1):3655. DOI: 10.1080/09298215.2018.1515233
  135. 135Sturm, B. L. T., Iglesias, M., Ben-Tal, O., Miron, M., and Gómez, E. (2019b). Artificial intelligence and music: Open questions of copyright law and engineering praxis. Arts, 8(3):115. DOI: 10.3390/arts8030115
  136. 136Sudnow, D. (1978). Ways of the Hand: The Organization of Improvised Conduct. MIT Press, Cambridge, MA.
  137. 137Sutherland, R. (1994). New Perspectives in Music. Sun Tavern Fields, London, UK.
  138. 138Taube, H. (2003). Notes from the Metalevel: An Introduction to Computer Composition. Swets & Zeitlinger, Lisse, NL.
  139. 139Temperley, D. (2001). The Cognition of Basic Musical Structures. MIT Press, Cambridge, MA.
  140. 140Tomašev, N., Paquet, U., Hassabis, D., and Kramnik, V. (2020). Assessing game balance with AlphaZero: Exploring alternative rule sets in chess. arXiv preprint, arXiv:2009.04374.
  141. 141Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236):433460. DOI: 10.1093/mind/LIX.236.433
  142. 142Tymoczko, D. and Meeùs, N. (2003). Progressions Fondamentales, Fonctions, Degrés: Une Grammaire de l’Harmonie Tonale Élémentaire. Musurgia, 10(3–4):3564.
  143. 143Varela, F. J., Thompson, E., Rosch, E., and Kabat-Zinn, J. (2016). The Embodied Mind: Cognitive Science and Human Experience. MIT Press, Cambridge, MA. DOI: 10.7551/mitpress/9780262529365.001.0001
  144. 144von Wright, G. H. (1980). Freedom and determination. Acta Philosophica Fennica, 31(1):188.
  145. 145Wallin, N. L., Merker, B., and Brown, S. (2000). The Origins of Music. The MIT Press, Cambridge, MA.
  146. 146West, R. and Horvitz, E. (2019). Reverse-engineering satire, or “Paper on computational humor accepted despite making serious advances”. In 33rd AAAI Conference on Artificial Intelligence. AAAI Press. DOI: 10.1609/aaai.v33i01.33017265
  147. 147Whittall, A. (2000). Musical Composition in the Twentieth Century. Oxford University Press, Oxford.
  148. 148Widdess, R. (1981). Aspects of form in North Indian ālāp and dhrupad. In Widdess, D. and Wolpert, R., editors, Music and Tradition: Essays Presented to Laurence Picken, pages 143181. Cambridge University Press, Cambridge, UK.
  149. 149Widmer, G. and Goebl, W. (2004). Computational models of expressive music performance: The state of the art. Journal of New Music Research, 33(3):203216. DOI: 10.1080/0929821042000317804
  150. 150Wiggins, G. A. (2006). A preliminary framework for description, analysis and comparison of creative systems. Knowledge-Based Systems, 19(7):449458. DOI: 10.1016/j.knosys.2006.04.009
  151. 151Wiggins, G. A. (2012a). Computer models of (music) cognition. In Rebuschat, P., Rohrmeier, M. A., Hawkins, J. A., and Cross, I., editors, Language and Music as Cognitive Systems, pages 169188. Oxford University Press, Oxford. DOI: 10.1093/acprof:oso/9780199553426.003.0018
  152. 152Wiggins, G. A. (2012b). Music, mind and mathematics: Theory, reality and formality. Journal of Mathematics and Music, 6(2):111123. DOI: 10.1080/17459737.2012.694710
  153. 153Wiggins, G. A. (2018). Creativity, information, and consciousness: The information dynamics of thinking. Physics of Life Reviews, 1:139. DOI: 10.1016/j.plrev.2018.05.001
  154. 154Wiggins, G. A., Müllensiefen, D., and Pearce, M. T. (2010). On the non-existence of music: Why music theory is a figment of the imagination. Musicae Scientiae, 14(1 (suppl)):231255. DOI: 10.1177/10298649100140S110
  155. 155Wiggins, G. A., Tyack, P., Scharff, C., and Rohrmeier, M. A. (2015). The evolutionary roots of creativity: Mechanisms and motivations. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664):20140099. DOI: 10.1098/rstb.2014.0099
  156. 156Winograd, T. (1972). Understanding Natural Language. Academic Press, New York. DOI: 10.1016/0010-0285(72)90002-3
  157. 157Witek, M. A., Clarke, E. F., Wallentin, M., Kringelbach, M. L., and Vuust, P. (2014). Syncopation, body-movement and pleasure in groove music. PLoS ONE, 9(4):e94446. DOI: 10.1371/journal.pone.0094446
  158. 158Zwanzger, J. (2018). Planet “Alpha Zero” oder Schach aus einer anderen Galaxie. Schach: Deutsche Schachzeitung, 72(2):415.
DOI: https://doi.org/10.5334/tismir.104 | Journal eISSN: 2514-3298
Language: English
Submitted on: Mar 9, 2021
Accepted on: Sep 6, 2021
Published on: Mar 9, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Martin Rohrmeier, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.