Have a personal or library account? Click to login
On the Development and Practice of AI Technology for Contemporary Popular Music Production Cover

On the Development and Practice of AI Technology for Contemporary Popular Music Production

Open Access
|Feb 2022

References

  1. 1Aouameur, C., Esling, P., and Hadjeres, G. (2019). Neural drum machine: An interactive system for real-time synthesis of drum sounds. In Proceedings of the Tenth International Conference on Computational Creativity (ICCC), Charlotte, North Carolina, USA.
  2. 2Bazin, T., Hadjeres, G., Esling, P., and Malt, M. (2020). Spectrogram inpainting for interactive generation of instrument sounds. In Joint Conference on AI Music Creativity.
  3. 3Bell, A. P. (2018). Dawn of the DAW: The Studio as Musical Instrument. Oxford University Press. DOI: 10.1093/oso/9780190296605.001.0001
  4. 4Bennett, J. (2012). Constraint, collaboration and creativity in popular songwriting teams. In Collins, D., editor, The Act of Musical Composition: Studies in the Creative Process, pages 13969. Ashgate Farnham.
  5. 5Braun, V., and Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2):77101. DOI: 10.1191/1478088706qp063oa
  6. 6Briot, J.-P., Hadjeres, G., and Pachet, F.-D. (2020). Deep Learning Techniques for Music Generation. Springer. DOI: 10.1007/978-3-319-70163-9
  7. 7Burgess, R. J. (2013). The Art of Music Production: The Theory and Practice. Oxford University Press.
  8. 8Cherry, E., and Latulipe, C. (2014). Quantifying the creativity support of digital tools through the creativity support index. ACM Transactions on Computer-Human Interaction (TOCHI), 21(4):125. DOI: 10.1145/2617588
  9. 9Chu, H., Urtasun, R., and Fidler, S. (2016). Song from PI: A musically plausible network for pop music generation. arXiv preprint arXiv:1611.03477.
  10. 10Clark, E., Ross, A. S., Tan, C., Ji, Y., and Smith, N. A. (2018). Creative writing with a machine in the loop: Case studies on slogans and stories. In 23rd International Conference on Intelligent User Interfaces (IUI), pages 329340. ACM. DOI: 10.1145/3172944.3172983
  11. 11Csikszentmihalyi, M. (1997). Creativity: Flow and the Psychology of Discovery and Invention. Harper-Perennial, New York.
  12. 12Csikszentmihalyi, M. (1999). Implications of a systems perspective for the study of creativity. In Handbook of Creativity. Cambridge University Press, Cambridge, UK. DOI: 10.1017/CBO9780511807916.018
  13. 13Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., and Sutskever, I. (2020). Jukebox: A generative model for music. CoRR, abs/2005.00341.
  14. 14Engel, J. H., Agrawal, K. K., Chen, S., Gulrajani, I., Donahue, C., and Roberts, A. (2019). GANSynth: Adversarial neural audio synthesis. In 7th International Conference on Learning Representations (ICLR), New Orleans, USA.
  15. 15Engel, J. H., Resnick, C., Roberts, A., Dieleman, S., Norouzi, M., Eck, D., and Simonyan, K. (2017). Neural audio synthesis of musical notes with WaveNet autoencoders. In Proceedings of the 34th International Conference on Machine Learning (ICML), Sydney, Australia.
  16. 16Frith, S. (2004). Popular music: Critical concepts in media and cultural studies, volume 1. Psychology Press.
  17. 17Gibson, J. J. (1977). The theory of affordances. In Shaw, R. and Bransford, J., editors, Perceiving, Acting and Knowing: Toward an Ecological Psychology, pages 6782. Erlbaum, Hillsdale, New Jersey, USA.
  18. 18Gioti, A.-M. (2021). Artificial intelligence for music composition. In Handbook of Artificial Intelligence for Music, pages 5373. Springer. DOI: 10.1007/978-3-030-72116-9_3
  19. 19Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information Processing (NIPS).
  20. 20Grachten, M., Deruty, E., and Tanguy, A. (2019). Auto-adaptive resonance equalization using dilated residual networks. In Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands.
  21. 21Grachten, M., Lattner, S., and Deruty, E. (2020). Bassnet: A variational gated autoencoder for conditional generation of bass guitar tracks with learned interactive control. Applied Sciences, 10(18). DOI: 10.3390/app10186627
  22. 22Hadjeres, G., and Crestel, L. (2021). The piano inpainting application. CoRR, abs/2107.05944.
  23. 23Hadjeres, G., Pachet, F., and Nielsen, F. (2017). Deep-Bach: A steerable model for Bach chorales generation. In Proceedings of the 34th International Conference on Machine Learning (ICML), volume 70, pages 13621371, Sydney, Australia.
  24. 24Hennessey, B. A. (2017). Taking a systems view of creativity: On the right path toward understanding. The Journal of Creative Behavior, 51(4):341344. DOI: 10.1002/jocb.196
  25. 25Hennion, A. (1983). The production of success: An anti-musicology of the pop song. Popular Music, 3:159193. DOI: 10.1017/S0261143000001616
  26. 26Huang, C.-Z. A., Koops, H. V., Newton-Rex, E., Dinculescu, M., and Cai, C. (2020). AI Song Contest: Human-AI co-creation in songwriting. In Proceedings of the 21st International Society for Music Information Retrieval Conference (ISMIR), pages 708716, Montreal, Canada.
  27. 27Ji, S., Luo, J., and Yang, X. (2020). A comprehensive survey on deep music generation: Multi-level representations, algorithms, evaluations, and future directions. ArXiv, abs/2011.06801.
  28. 28Jones, S. (1992). Rock Formation: Music, Technology, and Mass Communication, volume 3 of Foundations of Popular Culture. Sage Publications. DOI: 10.4135/9781483325491
  29. 29Kingma, D. P., and Welling, M. (2014). Auto-encoding variational Bayes. In 2nd International Conference on Learning Representations (ICLR), Banff, AB, Canada.
  30. 30Knotts, S., and Collins, N. (2021). AI-Lectronica: Music AI in clubs and studio production. In Handbook of Artificial Intelligence for Music, pages 849871. Springer. DOI: 10.1007/978-3-030-72116-9_30
  31. 31Lashua, B., and Thompson, P. (2016). Producing music, producing myth? Creativity in recording studios. International Association for the Study of Popular Music Journal, 6(2):7090. DOI: 10.5429/2079-3871(2016)v6i2.5en
  32. 32Lattner, S., and Grachten, M. (2019). High-level control of drum track generation using learned patterns of rhythmic interaction. In IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA. DOI: 10.1109/WASPAA.2019.8937261
  33. 33Mazzanti, S. (2019). Defining popular music: Towards a “historical melodics”. In Vilotijević, M. D. and Medić, I., editors, Contemporary Popular Music Studies, pages 1726. Springer VS, Wiesbaden. DOI: 10.1007/978-3-658-25253-3_2
  34. 34McIntyre, P. (2008). Creativity and cultural production: A study of contemporary Western popular music songwriting. Creativity Research Journal, 20(1):4052. DOI: 10.1080/10400410701841898
  35. 35Middleton, R. (1990). Studying popular music. McGraw-Hill Education (UK).
  36. 36Moore, A. F., and Martin, R. (2018). Rock: The Primary Text: Developing a Musicology of Rock. Routledge. DOI: 10.4324/9780429490170
  37. 37Moylan, W. (2020). Recording Analysis: How the Record Shapes the Song. CRC Press. DOI: 10.4324/9781315617176
  38. 38Muller, M. J., and Kuhn, S. (1993). Participatory design. Communications of the ACM, 36(6):2428. DOI: 10.1145/153571.255960
  39. 39Nistal, J., Lattner, S., and Richard, G. (2020). Drum-GAN: Synthesis of drum sounds with timbral feature conditioning using generative adversarial networks. In Proceedings of the 21st International Society for Music Information Retrieval Conference (ISMIR), Montreal, Canada.
  40. 40Payne, C. (2019). Musenet. https://openai.com/blog/musenet/. Retrieved Feb. 2021.
  41. 41Piantanida, P., and Vega, L. R. (2021). Information bottleneck and representation learning. In Rodrigues, M. R. D. and Eldar, Y. C., editors, Information-Theoretic Methods in Data Science, chapter 11, pages 330358. Cambridge University Press. DOI: 10.1017/9781108616799.012
  42. 42Roberts, A., Engel, J., Mann, Y., Gillick, J., Kayacik, C., Nørly, S., Dinculescu, M., Radebaugh, C., Hawthorne, C., and Eck, D. (2019). Magenta Studio: Augmenting creativity with deep learning in Ableton Live. In Proceedings of the International Workshop on Musical Metacreation (MUME).
  43. 43Roberts, A., Engel, J., Raffel, C., Hawthorne, C., and Eck, D. (2018). A hierarchical latent vector model for learning long-term structure in music. In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning (ICML), volume 80, pages 43644373, Stockholmsmässan, Stockholm Sweden. PMLR.
  44. 44Scurto, H., and Bevilacqua, F. (2018). Appropriating music computing practices through human-AI collaboration. In Journées d’Informatique Musicale (JIM 2018), Amiens, France.
  45. 45Serra, X. (2012). Opportunities for a cultural specific approach in the computational description of music. In Serra, X., Rao, P., Murthy, H., and Bozkurt, B., editors, Proceedings of the 2nd Comp-Music Workshop. Universitat Pompeu Fabra.
  46. 46Shneiderman, B. (2007). Creativity support tools: Accelerating discovery and innovation. Communications of the ACM, 50:2032. DOI: 10.1145/1323688.1323689
  47. 47Steinmetz, C. J., and Reiss, J. D. (2020). Randomized overdrive neural networks. CoRR, abs/2010.04237.
  48. 48Tagg, P. (1982). Analysing popular music: theory, method and practice. Popular music, 2:3767. DOI: 10.1017/S0261143000001227
  49. 49Thompson, P. (2019). Creativity in the Recording Studio: Alternative Takes. Springer. DOI: 10.1007/978-3-030-01650-0
  50. 50van den Oord, A., Li, Y., and Vinyals, O. (2018). Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748.
  51. 51Yang, L.-C., Chou, S.-Y., and Yang, Y.-H. (2017). MidiNet: A convolutional generative adversarial network for symbolic-domain music generation. arXiv preprint arXiv:1703.10847.
DOI: https://doi.org/10.5334/tismir.100 | Journal eISSN: 2514-3298
Language: English
Submitted on: Mar 1, 2021
Accepted on: Dec 22, 2021
Published on: Feb 7, 2022
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Emmanuel Deruty, Maarten Grachten, Stefan Lattner, Javier Nistal, Cyran Aouameur, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.