References
- Adewumi, A. et al. (2024) ‘Reviewing the impact of AI on renewable energy efficiency and management’, International Journal of Science and Research Archive, 11(1), pp. 1518–1527. Available at: 10.30574/IJSRA.2024.11.1.0245
- Albarakati, A.J. et al. (2021) ‘Real-Time Energy Management for DC Microgrids Using Artificial Intelligence’, Energies, 14(17). Available at: 10.3390/EN14175307
- Awachat, A., Dube, A. and Chaudhri, S. (2025) ‘ML for Sustainable Solutions: Applications in Renewable Energy Optimization and Climate Change Prediction’, 4th International Conference on Sentiment Analysis and Deep Learning, ICSADL 2025 – Proceedings, pp. 1689–1694. Available at: 10.1109/ICSADL65848.2025.10933273
- Cacciamani, G.E. et al. (2023) ‘PRISMA AI reporting guidelines for systematic reviews and meta-analyses on AI in healthcare’, Nature medicine, 29(1), pp. 14–15. Available at: 10.1038/S41591-022-02139-W
- Camacho, J. de J. et al. (2024) ‘Leveraging Artificial Intelligence to Bolster the Energy Sector in Smart Cities: A Literature Review’, Energies, 17(2). Available at: 10.3390/EN17020353
- Donti, P.L. and Kolter, J.Z. (2021) ‘Machine Learning for Sustainable Energy Systems’, Annual Review of Environment and Resources, 46(Volume 46, 2021), pp. 719–747. Available at: 10.1146/ANNUREV-ENVIRON-020220-061831
- Etukudoh, E.A. et al. (2024) ‘Electrical Engineering in Renewable Energy Systems: A Review of Design and Integration Challenges’, Engineering Science & Technology Journal, 5(1), pp. 231–244. Available at: 10.51594/ESTJ.V5I1.746
- Fu, X. et al. (2022) ‘Planning of distributed renewable energy systems under uncertainty based on statistical machine learning’, Protection and Control of Modern Power Systems, 7(1). Available at: 10.1186/S41601-022-00262-X
- Garmabdari, R. et al. (2019) ‘Optimal Power Flow Scheduling of Distributed Microgrid Systems Considering Backup Generators’, 2019 9th International Conference on Power and Energy Systems (ICPES) [Preprint]. Available at: 10.1109/ICPES47639.2019.9105372
- Gawusu, S. et al. (2022) ‘The dynamics of green supply chain management within the framework of renewable energy’, International Journal of Energy Research, 46(2), pp. 684–711. Available at: 10.1002/ER.7278
- Green, I.A. et al. (2023) ‘Technological advances of ammonia as energy storage solution’, Global Journal of Engineering and Technology Advances, 16(3), pp. 151–155. Available at: 10.30574/GJETA.2023.16.3.0185
- Hamdan, A. et al. (2024) ‘AI in renewable energy: A review of predictive maintenance and energy optimization’, International Journal of Science and Research Archive, 11(1), pp. 718–729. Available at: 10.30574/IJSRA.2024.11.1.0112
- Huang, B. and Wang, J. (2023) ‘Applications of Physics-Informed Neural Networks in Power Systems – A Review’, IEEE Transactions on Power Systems, 38(1), pp. 572–588. Available at: 10.1109/TPWRS.2022.3162473
- Ipakchi, A. and Albuyeh, F. (2009) ‘Grid of the future’, IEEE Power and Energy Magazine, 7(2), pp. 52–62. Available at: 10.1109/MPE.2008.931384
- Islam, A. and Othman, F. (2024) ‘Renewable Energy MicroGrid Power Forecasting: AI Techniques with Environmental Perspective’, Research Square Platform LLC [Preprint]. Available at: 10.21203/RS.3.RS-4260337/V1
- Jiang, R., Liu, H. and Peng, H. (2024) ‘An optimal configuration method of energy storage system considering source-load matching’, Journal of Physics: Conference Series, 2788(1). Available at: 10.1088/1742-6596/2788/1/012018
- Kalair, A. et al. (2021) ‘Role of energy storage systems in energy transition from fossil fuels to renewables’, Energy Storage, 3(1). Available at: 10.1002/EST2.135
- Latrach, A. et al. (2024) ‘A critical review of physics-informed machine learning applications in subsurface energy systems’, Geoenergy Science and Engineering, 239, p.
212938 . Available at: 10.1016/J.GEOEN.2024.212938 - Liu, Z. et al. (2025) ‘A Comprehensive Review of Wind Power Prediction Based on Machine Learning: Models, Applications, and Challenges’, Energies 2025, Vol. 18, Page 350, 18(2), p.
350 . Available at: 10.3390/EN18020350. - Machina, S.P.C., Koduru, S.S. and Madichetty, S. (2022) ‘Solar Energy Forecasting Using Deep Learning Techniques’, 2022 2nd International Conference on Power Electronics and IoT Applications in Renewable Energy and its Control, PARC 2022 [Preprint]. Available at: 10.1109/PARC52418.2022.9726605
- Mauro, G. (2024) ‘The New Power Couple: Artificial Intelligence and Renewable Energy’, Journal of Strategic Innovation and Sustainability, 19(3). Available at: 10.33423/JSIS.V19I3.7374
- Mysore, S. (2024) ‘Role of Artificial Intelligence in Grid Modernization: Loring How Ai Can Enhance Grid Management, Predict Energy Demand, and Optimize Renewable Energy Usage’, International Research Journal of Modernization in Engineering Technology and Science [Preprint]. Available at: 10.56726/IRJMETS48452
- Necula, S.C. (2023) ‘Assessing the Potential of Artificial Intelligence in Advancing Clean Energy Technologies in Europe: A Systematic Review’, Energies, 16(22). Available at: 10.3390/EN16227633
- Ohalete, N.C. et al. (2023) ‘AI-driven solutions in renewable energy: A review of data science applications in solar and wind energy optimization’, World Journal of Advanced Research and Reviews, 20(3), pp. 401–417. Available at: 10.30574/WJARR.2023.20.3.2433
- Onwusinkwue, S. et al. (2024) ‘Artificial intelligence (AI) in renewable energy: A review of predictive maintenance and energy optimization’, World Journal of Advanced Research and Reviews, 21(1), pp. 2487–2499. Available at: 10.30574/WJARR.2024.21.1.0347
- Orumwense, E.F. and Abo-Al-Ez, K. (2022)
‘Internet of Things for smart energy systems: A review on its applications, challenges and future trends’ , AIMS Electronics and Electrical Engineering. American Institute of Mathematical Sciences, pp. 50–74. Available at: 10.3934/electreng.2023004 - Ragab, R. et al. (2021) ‘Optimized Hybrid Renewable Energy System for a Baseload Plant’, Energy Proceedings, 17. Available at: 10.46855/ENERGY-PROCEEDINGS-8674
- Rajitha, M. and Raghu Ram, A. (2024) ‘An overview of Artificial Intelligence applications to electrical power systems and DC microgrids’, E3S Web of Conferences, 547. Available at: 10.1051/E3SCONF/202454701002
- Rugolo, J. and Aziz, M.J. (2012) ‘Electricity storage for intermittent renewable sources’, Energy & Environmental Science, 5(5), pp. 7151–7160. Available at: 10.1039/C2EE02542F
- Sammar, M.J. et al. (2024) ‘Illuminating the Future: A Comprehensive Review of AI-Based Solar Irradiance Prediction Models’, IEEE Access, 12, pp.
114394–114415 . Available at: 10.1109/ACCESS.2024.3402096 - Shao, H. et al. (2015) ‘Rolling bearing fault diagnosis using an optimization deep belief network’, Measurement Science and Technology, 26(11), p.
115002 . Available at: 10.1088/0957-0233/26/11/115002 - Soni, P., Dave, V. and Paliwal, H. (2023) ‘Artificial Intelligence-Enabled Techno-Economic Analysis and Optimization of Grid-Tied Solar PV-Fuel Cell Hybrid Power Systems for Enhanced Performance’, Data Science and Intelligent Computing Techniques, pp. 781–794. Available at: 10.56155/978-81-955020-2-8-67
- Ukoba, K. et al. (2024) ‘Optimizing renewable energy systems through artificial intelligence: Review and future prospects’, Energy & Environment, 35(7), pp. 3833–3879. Available at: 10.1177/0958305X241256293
- Wang, W. et al. (2023) ‘Fast frequency response for centralized renewable energy source stations based on deep reinforcement learning’, Second International Conference on Energy, Power, and Electrical Technology (ICEPET 2023), p.
126 . Available at: 10.1117/12.3004411 - Wen, X. et al. (2024) ‘Leveraging AI and Machine Learning Models for Enhanced Efficiency in Renewable Energy Systems’, Applied and Computational Engineering, 96(1), pp. 107–112. Available at: 10.54254/2755-2721/96/20241416
- Yousef, L.A., Yousef, H. and Rocha-Meneses, L. (2023) ‘Artificial Intelligence for Management of Variable Renewable Energy Systems: A Review of Current Status and Future Directions’, Energies, 16(24). Available at: 10.3390/EN16248057
