Have a personal or library account? Click to login
Artificial Intelligence in Renewable Energy: A Systematic Review of Trends in Solar, Wind, and Smart Grid Applications Cover

Artificial Intelligence in Renewable Energy: A Systematic Review of Trends in Solar, Wind, and Smart Grid Applications

Open Access
|Aug 2025

References

  1. Adewumi, A. et al. (2024) ‘Reviewing the impact of AI on renewable energy efficiency and management’, International Journal of Science and Research Archive, 11(1), pp. 15181527. Available at: 10.30574/IJSRA.2024.11.1.0245
  2. Albarakati, A.J. et al. (2021) ‘Real-Time Energy Management for DC Microgrids Using Artificial Intelligence’, Energies, 14(17). Available at: 10.3390/EN14175307
  3. Awachat, A., Dube, A. and Chaudhri, S. (2025) ‘ML for Sustainable Solutions: Applications in Renewable Energy Optimization and Climate Change Prediction’, 4th International Conference on Sentiment Analysis and Deep Learning, ICSADL 2025 – Proceedings, pp. 16891694. Available at: 10.1109/ICSADL65848.2025.10933273
  4. Cacciamani, G.E. et al. (2023) ‘PRISMA AI reporting guidelines for systematic reviews and meta-analyses on AI in healthcare’, Nature medicine, 29(1), pp. 1415. Available at: 10.1038/S41591-022-02139-W
  5. Camacho, J. de J. et al. (2024) ‘Leveraging Artificial Intelligence to Bolster the Energy Sector in Smart Cities: A Literature Review’, Energies, 17(2). Available at: 10.3390/EN17020353
  6. Donti, P.L. and Kolter, J.Z. (2021) ‘Machine Learning for Sustainable Energy Systems’, Annual Review of Environment and Resources, 46(Volume 46, 2021), pp. 719747. Available at: 10.1146/ANNUREV-ENVIRON-020220-061831
  7. Etukudoh, E.A. et al. (2024) ‘Electrical Engineering in Renewable Energy Systems: A Review of Design and Integration Challenges’, Engineering Science & Technology Journal, 5(1), pp. 231244. Available at: 10.51594/ESTJ.V5I1.746
  8. Fu, X. et al. (2022) ‘Planning of distributed renewable energy systems under uncertainty based on statistical machine learning’, Protection and Control of Modern Power Systems, 7(1). Available at: 10.1186/S41601-022-00262-X
  9. Garmabdari, R. et al. (2019) ‘Optimal Power Flow Scheduling of Distributed Microgrid Systems Considering Backup Generators’, 2019 9th International Conference on Power and Energy Systems (ICPES) [Preprint]. Available at: 10.1109/ICPES47639.2019.9105372
  10. Gawusu, S. et al. (2022) ‘The dynamics of green supply chain management within the framework of renewable energy’, International Journal of Energy Research, 46(2), pp. 684711. Available at: 10.1002/ER.7278
  11. Green, I.A. et al. (2023) ‘Technological advances of ammonia as energy storage solution’, Global Journal of Engineering and Technology Advances, 16(3), pp. 151155. Available at: 10.30574/GJETA.2023.16.3.0185
  12. Hamdan, A. et al. (2024) ‘AI in renewable energy: A review of predictive maintenance and energy optimization’, International Journal of Science and Research Archive, 11(1), pp. 718729. Available at: 10.30574/IJSRA.2024.11.1.0112
  13. Huang, B. and Wang, J. (2023) ‘Applications of Physics-Informed Neural Networks in Power Systems – A Review’, IEEE Transactions on Power Systems, 38(1), pp. 572588. Available at: 10.1109/TPWRS.2022.3162473
  14. Ipakchi, A. and Albuyeh, F. (2009) ‘Grid of the future’, IEEE Power and Energy Magazine, 7(2), pp. 5262. Available at: 10.1109/MPE.2008.931384
  15. Islam, A. and Othman, F. (2024) ‘Renewable Energy MicroGrid Power Forecasting: AI Techniques with Environmental Perspective’, Research Square Platform LLC [Preprint]. Available at: 10.21203/RS.3.RS-4260337/V1
  16. Jiang, R., Liu, H. and Peng, H. (2024) ‘An optimal configuration method of energy storage system considering source-load matching’, Journal of Physics: Conference Series, 2788(1). Available at: 10.1088/1742-6596/2788/1/012018
  17. Kalair, A. et al. (2021) ‘Role of energy storage systems in energy transition from fossil fuels to renewables’, Energy Storage, 3(1). Available at: 10.1002/EST2.135
  18. Latrach, A. et al. (2024) ‘A critical review of physics-informed machine learning applications in subsurface energy systems’, Geoenergy Science and Engineering, 239, p. 212938. Available at: 10.1016/J.GEOEN.2024.212938
  19. Liu, Z. et al. (2025) ‘A Comprehensive Review of Wind Power Prediction Based on Machine Learning: Models, Applications, and Challenges’, Energies 2025, Vol. 18, Page 350, 18(2), p. 350. Available at: 10.3390/EN18020350.
  20. Machina, S.P.C., Koduru, S.S. and Madichetty, S. (2022) ‘Solar Energy Forecasting Using Deep Learning Techniques’, 2022 2nd International Conference on Power Electronics and IoT Applications in Renewable Energy and its Control, PARC 2022 [Preprint]. Available at: 10.1109/PARC52418.2022.9726605
  21. Mauro, G. (2024) ‘The New Power Couple: Artificial Intelligence and Renewable Energy’, Journal of Strategic Innovation and Sustainability, 19(3). Available at: 10.33423/JSIS.V19I3.7374
  22. Mysore, S. (2024) ‘Role of Artificial Intelligence in Grid Modernization: Loring How Ai Can Enhance Grid Management, Predict Energy Demand, and Optimize Renewable Energy Usage’, International Research Journal of Modernization in Engineering Technology and Science [Preprint]. Available at: 10.56726/IRJMETS48452
  23. Necula, S.C. (2023) ‘Assessing the Potential of Artificial Intelligence in Advancing Clean Energy Technologies in Europe: A Systematic Review’, Energies, 16(22). Available at: 10.3390/EN16227633
  24. Ohalete, N.C. et al. (2023) ‘AI-driven solutions in renewable energy: A review of data science applications in solar and wind energy optimization’, World Journal of Advanced Research and Reviews, 20(3), pp. 401417. Available at: 10.30574/WJARR.2023.20.3.2433
  25. Onwusinkwue, S. et al. (2024) ‘Artificial intelligence (AI) in renewable energy: A review of predictive maintenance and energy optimization’, World Journal of Advanced Research and Reviews, 21(1), pp. 24872499. Available at: 10.30574/WJARR.2024.21.1.0347
  26. Orumwense, E.F. and Abo-Al-Ez, K. (2022) ‘Internet of Things for smart energy systems: A review on its applications, challenges and future trends’, AIMS Electronics and Electrical Engineering. American Institute of Mathematical Sciences, pp. 5074. Available at: 10.3934/electreng.2023004
  27. Ragab, R. et al. (2021) ‘Optimized Hybrid Renewable Energy System for a Baseload Plant’, Energy Proceedings, 17. Available at: 10.46855/ENERGY-PROCEEDINGS-8674
  28. Rajitha, M. and Raghu Ram, A. (2024) ‘An overview of Artificial Intelligence applications to electrical power systems and DC microgrids’, E3S Web of Conferences, 547. Available at: 10.1051/E3SCONF/202454701002
  29. Rugolo, J. and Aziz, M.J. (2012) ‘Electricity storage for intermittent renewable sources’, Energy & Environmental Science, 5(5), pp. 71517160. Available at: 10.1039/C2EE02542F
  30. Sammar, M.J. et al. (2024) ‘Illuminating the Future: A Comprehensive Review of AI-Based Solar Irradiance Prediction Models’, IEEE Access, 12, pp. 114394–114415. Available at: 10.1109/ACCESS.2024.3402096
  31. Shao, H. et al. (2015) ‘Rolling bearing fault diagnosis using an optimization deep belief network’, Measurement Science and Technology, 26(11), p. 115002. Available at: 10.1088/0957-0233/26/11/115002
  32. Soni, P., Dave, V. and Paliwal, H. (2023) ‘Artificial Intelligence-Enabled Techno-Economic Analysis and Optimization of Grid-Tied Solar PV-Fuel Cell Hybrid Power Systems for Enhanced Performance’, Data Science and Intelligent Computing Techniques, pp. 781794. Available at: 10.56155/978-81-955020-2-8-67
  33. Ukoba, K. et al. (2024) ‘Optimizing renewable energy systems through artificial intelligence: Review and future prospects’, Energy & Environment, 35(7), pp. 38333879. Available at: 10.1177/0958305X241256293
  34. Wang, W. et al. (2023) ‘Fast frequency response for centralized renewable energy source stations based on deep reinforcement learning’, Second International Conference on Energy, Power, and Electrical Technology (ICEPET 2023), p. 126. Available at: 10.1117/12.3004411
  35. Wen, X. et al. (2024) ‘Leveraging AI and Machine Learning Models for Enhanced Efficiency in Renewable Energy Systems’, Applied and Computational Engineering, 96(1), pp. 107112. Available at: 10.54254/2755-2721/96/20241416
  36. Yousef, L.A., Yousef, H. and Rocha-Meneses, L. (2023) ‘Artificial Intelligence for Management of Variable Renewable Energy Systems: A Review of Current Status and Future Directions’, Energies, 16(24). Available at: 10.3390/EN16248057
DOI: https://doi.org/10.5334/rss.6 | Journal eISSN: 2977-8441
Language: English
Submitted on: Apr 25, 2025
|
Accepted on: Jul 17, 2025
|
Published on: Aug 1, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Tajul Rosli Razak, Mohammad Hafiz Ismail, Mohamad Yusof Darus, Hasila Jarimi, Yuehong Su, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.