| NOMENCLATURE | |||
|---|---|---|---|
| η | Polytropic efficiency | y | Work |
| k | Isentropic exponent | Z | Compressibility factor |
| M | Molar weight | ρ | Density |
| ṁ | Mass flow rate | Subscripts | |
| n | Polytropic exponent | 0 | At sea level |
| P | Power | 1 | Suction (atmospheric) |
| p | Pressure | 2 | Discharge |
| R | Gas constant | p | Polytropic |
| T | Temperature | u | Universal, |
| v | Volume specific | ||
Table 1
Study Input values.
| PARAMETER | SYMBOL | UNIT | VALUE(S) | NOTES |
|---|---|---|---|---|
| Ambient/Base Temperature | T1 | °C | 0–55 | 5°C increments are used (0,5,10,15, 20….) |
| Relative Humidity | % | 60 | Standard ISO Condition | |
| Inlet Pressure | p1 | Barabs | 1.01325 | At Sea level/Standard ISO Condition |
| Polytropic Efficiency | η | % | 80 | Assumed |
| Outlet Pressure | p2 | Barabs | 11 | Assumed value |
| Universal Gas Constant | Ru | J/(kmol.K) | 8314.47 | Constant for Air |
| Compressibility Factor | Z | 1 | Ideal Gas Behavior | |
| Air Mass Flow Rate | ṁ | Kg/s | 50 | Assumed Value |
| Isentropic Exponent | k | 1.4 | For Dry Air | |
| Avg Temperature Increase | °C | 1.0–1.5 | As a result of climate change (Intergovernmental Panel on Climate Change, 2018) | |
| Fuel Types & their CO2 emissions per kwh | Natural Gas | 0.44 Kg/kwh | U.S. utility-scale net electricity generation and resulting CO2 emissions (U.S. Energy Information Administration, 2024) | |
| Coal | 1.0478 Kg/kwh | |||
| Petroleum | 1.11584 Kg/kwh | |||
| Availability Factor | 60% | Conservative Assumption (Saidur et al., 2010) | ||
Table 2
Compression power requirement – Model output.
| AMBIENT/BASE TEMPERATURE (°C) | AIR DENSITY (ρ1,kg/m3) | MOLAR WEIGHT (M, g/mol) | R, | POLYTROPIC WORK yp | COMPRESSION POWER (P, MW) |
|---|---|---|---|---|---|
| 0 | 1.288 | 28.877 | 287.931 | 295,882.443 | 14.794 |
| 5 | 1.263 | 28.830 | 288.398 | 301,787.014 | 15.089 |
| 10 | 1.238 | 28.767 | 289.027 | 307,882.446 | 15.394 |
| 15 | 1.213 | 28.683 | 289.870 | 314,232.606 | 15.712 |
| 20 | 1.188 | 28.573 | 290.989 | 320,919.261 | 16.046 |
| 25 | 1.162 | 28.429 | 292.463 | 328,046.856 | 16.402 |
| 30 | 1.135 | 28.243 | 294.393 | 335,748.604 | 16.787 |
| 35 | 1.107 | 28.004 | 296.902 | 344,194.637 | 17.210 |
| 40 | 1.078 | 27.701 | 300.147 | 353,603.213 | 17.680 |
| 45 | 1.046 | 27.320 | 304.331 | 364,256.534 | 18.213 |
| 50 | 1.012 | 26.846 | 309.713 | 376,523.739 | 18.826 |
| 55 | 0.975 | 26.259 | 316.635 | 390,895.294 | 19.545 |
| Reference, Equation | Professional Quality Psychrometric Calculator | ISO 5389:2005, Eq. (6) | ISO 5389:2005, Eq. (3) | ISO 5389:2005, Eq. (2) | ISO 5389:2005, Eq. (1) |

Figure 1
Compression Power vs. Temperature polynomial trendline represented by a second-degree equation.

Figure 2
Temperature Sensitivity Across the Operating Range.
Table 3
Energy Increase (kWh/year) for 1.0°C and 1.5°C rises at various base temperatures.
| FOR 1.0°C | FOR 1.5°C | |
|---|---|---|
| AMBIENT/BASE TEMPERATURE (°C) | INCREASE IN ENERGY PER YEAR (kwh) | INCREASE IN ENERGY PER YEAR (kwh) |
| 0 | 227,532.46 | 341,298.70 |
| 5 | 265,454.54 | 398,181.81 |
| 10 | 305,581.39 | 458,372.09 |
| 15 | 343,529.41 | 515,294.11 |
| 20 | 383,649.63 | 575,474.45 |
| 25 | 423,870.96 | 635,806.45 |
| 30 | 465,132.74 | 697,699.11 |
| 35 | 505,384.61 | 758,076.92 |
| 40 | 541,855.67 | 812,783.50 |
| 45 | 584,000.00 | 876,000.00 |
| 50 | 625,714.28 | 938,571.42 |
| 55 | 665,316.45 | 997,974.68 |

Figure 3
CO2 Emissions Increase Across the Operating Range as a Result of the 1.0°C Rise in Global Temperatures.

Figure 4
CO2 Emissions Increase Across the Operating Range as a Result of the 1.5°C Rise in Global Temperatures.
