Have a personal or library account? Click to login
Preregistration of Analyses of Preexisting Data Cover

Preregistration of Analyses of Preexisting Data

Open Access
|Aug 2019

References

  1. Allen, C., & Mehler, D. M. A. (2019). Open science challenges, benefits and tips in early career and beyond. PLoS Biology, 17(5), e3000246. DOI: 10.1371/journal.pbio.3000246
  2. Asendorpf, J. B., Conner, M., De Fruyt, F., De Houwer, J., Denissen, J. J. A., Fiedler, K., Wicherts, J. M., et al. (2013). Recommendations for increasing replicability in psychology. European Journal of Personality, 27(2), 108119. DOI: 10.1002/per.1919
  3. Bakker, M., van Dijk, A., & Wicherts, J. M. (2012). The rules of the game called psychological science. Perspectives on Psychological Science, 7(6), 543554. DOI: 10.1177/1745691612459060
  4. Boehm, U., Annis, J., Frank, M. J., Hawkins, G. E., Heathcote, A., Kellen, D., Wagenmakers, E.-J., et al. (2018). Estimating across-trial variability parameters of the Diffusion Decision Model: Expert advice and recommendations. Journal of Mathematical Psychology, 87, 4675. DOI: 10.1016/j.jmp.2018.09.004
  5. Brandt, M. J., IJzerman, H., Dijksterhuis, A., Farach, F. J., Geller, J., Giner-Sorolla, R., van ’t Veer, A., et al. (2014). The Replication Recipe: What makes for a convincing replication? Journal of Experimental Social Psychology, 50(1), 217224. DOI: 10.1016/j.jesp.2013.10.005
  6. Chambers, C. D., Feredoes, E., Muthukumaraswamy, S. D., & Etchells, P. J. (2014). Instead of “playing the game” it is time to change the rules: Registered Reports at AIMS Neuroscience and beyond. AIMS Neuroscience, 1(1), 417. DOI: 10.3934/Neuroscience.2014.1.4
  7. Coursol, A., & Wagner, E. E. (1986). Effect of positive findings on submission and acceptance rates: A note on meta-analysis bias. Professional Psychology: Research and Practice, 17(2), 136137. DOI: 10.1037/0735-7028.17.2.136
  8. Dawson, M. E., Schell, A. M., & Filion, D. L. (2007). The electrodermal system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (3rd ed., pp. 159181). New York: Cambridge University Press.
  9. De Groot, A. D. (1969). Methodology: foundations ofinference and research in the behavioral sciences. The Hague: Mouton.
  10. De Groot, A. D. (2014). The meaning of “significance” for different types of research [translated and annotated by Eric-Jan Wagenmakers, Denny Borsboom, Josine Verhagen, Rogier Kievit, Marjan Bakker, Angelique Cramer, Dora Matzke, Don Mellenbergh, and Han L. J. van der Maas]. Acta Psychologica, 148, 188194. DOI: 10.1016/j.actpsy.2014.02.001
  11. Dickersin, K., & Drummond, R. (2003). Registering clinical trials. JAMA, 290(4), 516523. DOI: 10.1001/jama.290.4.516
  12. Dutilh, G., Annis, J., Brown, S. D., Cassey, P., Evans, N. J., Grasman, R. P. P. P., Donkin, C., et al. (2018). The quality of response time data inference: A blinded, collaborative assessment of the validity of cognitive models. Psychonomic Bulletin & Review, 119. DOI: 10.3758/s13423-017-1417-2
  13. Easterbrook, P. J., Gopalan, R., Berlin, J. A., & Matthews, D. R. (1991). Publication bias in clinical research. The Lancet, 337(8746), 867872. DOI: 10.1016/0140-6736(91)90201-Y
  14. Fanelli, D. (2010). ‘“Positive”’ results increase down the hierarchy of the sciences. PloS One, 5(4). DOI: 10.1371/journal.pone.0010068
  15. Franco, A., Malhotra, N., & Simonovits, G. (2014). Publication bias in the social sciences: Unlocking the file drawer. Science, 345(6203), 15021505. DOI: 10.1126/science.1255484
  16. Goodman, S. N., Fanelli, D., & Ioannidis, J. P. A. (2016). What does research reproducibility mean? Science Translational Medicine, 8(341), 341ps12341ps12. DOI: 10.1126/scitranslmed.aaf5027
  17. Hussey, I., Hughes, S., Lai, C., Ebersole, C. S., Axt, J., & Nosek, B. A. (2019). Attitudes, Identities, and Individual Differences (AIID) study. https://osf.io/pcjwf/
  18. Indovina, I., Robbins, T. W., Núñez-Elizalde, A. O., Dunn, B. D., & Bishop, S. J. (2011). Fear-Conditioning Mechanisms Associated with Trait Vulnerability to Anxiety in Humans. Neuron, 69(3), 563571. DOI: 10.1016/j.neuron.2010.12.034
  19. Jebb, A. T., Parrigon, S., & Woo, S. E. (2017). Exploratory data analysis as a foundation of inductive research. Human Resource Management Review, 27(2), 265276. DOI: 10.1016/j.hrmr.2016.08.003
  20. Kerr, N. L. (1998). HARKing: Hypothesizing after the results are known. Personality and Social Psychology Review, 2(3), 196217. DOI: 10.1207/s15327957pspr0203_4
  21. Kidwell, M. C., Lazarević, L. B., Baranski, E., Hardwicke, T. E., Piechowski, S., Falkenberg, L.-S., Nosek, B. A., et al. (2016). Badges to acknowledge open practices: A simple, low-cost, effective method for increasing transparency. PLOS Biology, 14(5), e1002456. DOI: 10.1371/journal.pbio.1002456
  22. Klein, R. A., Ratliff, K. A., Vianello, M., Adams, R. B., Bahník, Š., Bernstein, M. J., Nosek, B. A., et al. (2014). Investigating variation in replicability. Social Psychology, 45(3), 142152. DOI: 10.1027/1864-9335/a000178
  23. Krypotos, A.-M., Arnaudova, I., Effting, M., Kindt, M., & Beckers, T. (2015). Effects of approach-avoidance training on the extinction and return of fear responses. PLOS ONE, 10(7), e0131581. DOI: 10.1371/journal.pone.0131581
  24. Krypotos, A.-M., Klugkist, I., Mertens, G., & Engelhard, I. M. (2019). A step-by-step guide on preregistration and effective data sharing for psychopathology research. Journal of Abnormal Psychology, 128(6), 517527. DOI: 10.1037/abn0000424
  25. Lakens, D., Hilgard, J., & Staaks, J. (2016). On the reproducibility of meta-analyses: Six practical recommendations. BMC Psychology, 110. DOI: 10.1186/s40359-016-0126-3
  26. Lee, M. D., Criss, A., Devezer, B., Donkin, C., Etz, A., Leite, F. P., Vandekerckhove, J., et al. (2019). Robust modeling in cognitive science Michael. Preprint. DOI: 10.31234/osf.io/dmfhk
  27. Leonelli, S. (2018). Rethinking reproducibility as a criterion for research quality. In Research in the History of Economic Thought and Methodology, 36B, 129146. DOI: 10.1108/S0743-41542018000036B009
  28. Levine, T. R., Asada, K. J., & Carpenter, C. (2009). Sample sizes and effect sizes are negatively correlated in meta-analyses: Evidence and implications of a publication bias against nonsignificant findings. Communication Monographs, 76(3), 286302. DOI: 10.1080/03637750903074685
  29. Lewandowsky, S., & Bishop, D. (2016). Research integrity: Don’t let transparency damage science. Nature, 529(7587), 459461. DOI: 10.1038/529459a
  30. Lilienfeld, S. O. (2017). Psychology’s replication crisis and the grant culture: Righting the ship. Perspectives on Psychological Science, 12(4), 660664. DOI: 10.1177/1745691616687745
  31. Lindsay, S. D. (2019). Arguments for preregistering psychology research – Psychonomic Society featured content. Retrieved from https://featuredcontent.psychonomic.org/arguments-for-preregistering-psychology-research/
  32. Lindsay, S. D., Simons, D. J., & Lilienfeld, S. O. (2016). Research preregistration 101. APS Observer. Retrieved from https://www.psychologicalscience.org/observer/research-preregistration-101
  33. Maner, J. K. (2014). Let’s put our money where our mouth is: If authors are to change their ways, reviewers (and editors) must change with them. Perspectives on Psychological Science, 9(3), 343351. DOI: 10.1177/1745691614528215
  34. Mertens, G., & De Houwer, J. (2016). The impact of a context switch and context instructions on the return of verbally conditioned fear. Journal of Behavior Therapy and Experimental Psychiatry, 51, 1018. DOI: 10.1016/j.jbtep.2015.11.001
  35. Mertens, G., Kuhn, M., Raes, A. K., Kalisch, R., De Houwer, J., & Lonsdorf, T. B. (2016). Fear expression and return of fear following threat instruction with or without direct contingency experience. Cognition and Emotion, 30(5), 968984. DOI: 10.1080/02699931.2015.1038219
  36. Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Group, P.-P., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 19. DOI: 10.1186/2046-4053-4-1
  37. Munafò, M. R., Nosek, B. A., Bishop, D. V. M., Button, K. S., Chambers, C. D., Percie du Sert, N., Ioannidis, J. P. A., et al. (2017). A manifesto for reproducible science. Nature Human Behaviour, 1(1), 0021. DOI: 10.1038/s41562-016-0021
  38. Murayama, K., Pekrun, R., & Fiedler, K. (2014). Research practices that can prevent an inflation of false-positive rates. Personality and Social Psychology Review, 18(2), 107118. DOI: 10.1177/1088868313496330
  39. Muthukrishna, M., & Henrich, J. (2019). A problem in theory. Nature Human Behaviour. DOI: 10.1038/s41562-018-0522-1
  40. Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler, S. J., Yarkoni, T., et al. (2015). Promoting an open research culture. Science, 348(6242), 14221425. DOI: 10.1126/science.aab2374
  41. Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716aac4716. DOI: 10.1126/science.aac4716
  42. Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86(3), 638641. DOI: 10.1037/0033-2909.86.3.638
  43. Schimmack, U. (2012). The ironic effect of significant results on the credibility of multiple-study articles. Psychological Methods, 17(4), 551566. DOI: 10.1037/a0029487
  44. Shiffrin, R. (2019). Complexity of science v. #PSprereg? Retrieved from https://featuredcontent.psychonomic.org/complexity-of-science-v-psprereg/
  45. Silberzahn, R., Uhlmann, E. L., Martin, D. P., Anselmi, P., Aust, F., Awtrey, E., Nosek, B. A., et al. (2018). Many analysts, one data set: Making transparent how variations in analytic choices affect results. Advances in Methods and Practices in Psychological Science, 1(3), 337356. DOI: 10.1177/2515245917747646
  46. Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-Positive Psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 13591366. DOI: 10.1177/0956797611417632
  47. Spielberger, C. D., Gorsuch, R. L., & Lushene, R. E. (1970). STAI manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.
  48. Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). Increasing transparency through a multiverse analysis. Perspectives on Psychological Science, 11(5), 702712. DOI: 10.1177/1745691616658637
  49. Syed, M., & Donnellan, B. (2018). Developing pre-registration plans for secondary data analysis – DEVSEC18 workshop. Retrieved from https://osf.io/j25pn/
  50. Szucs, D., & Ioannidis, J. P. A. (2017). Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. PLOS Biology, 15(3), e2000797. DOI: 10.1371/journal.pbio.2000797
  51. Tabbert, K., Merz, C. J., Klucken, T., Schweckendiek, J., Vaitl, D., Wolf, O. T., & Stark, R. (2011). Influence of contingency awareness on neural, electrodermal and evaluative responses during fear conditioning. Social Cognitive and Affective Neuroscience, 6(4), 495506. DOI: 10.1093/scan/nsq070
  52. van ’t Veer, A. E., & Giner-Sorolla, R. (2016). Pre-registration in social psychology—A discussion and suggested template. Journal of Experimental Social Psychology, 67, 212. DOI: 10.1016/j.jesp.2016.03.004
  53. Veldkamp, C. L. S., Bakker, M., van Assen, M. A. L. M., Crompvoets, E. A. V., Ong, H. H., Nosek, B. A., Wicherts, J. M., et al. (2018). Ensuring the quality and specificity of preregistrations. Preprint, 130. DOI: 10.31234/osf.io/cdgyh
  54. Wagenmakers, E. J., & Dutilh, G. (2016). Seven selfish reasons for preregistration. APS Observer, 29(9). Retrieved from https://www.psychologicalscience.org/observer/seven-selfish-reasons-for-preregistration
  55. Wagenmakers, E. J., Wetzels, R., Borsboom, D., & van der Maas, H. L. J. (2011). Why psychologists must change the way they analyze their data: The case of psi: Comment on Bem (2011). Journal of Personality and Social Psychology, 100(3), 426432. DOI: 10.1037/a0022790
  56. Wagenmakers, E. J., Wetzels, R., Borsboom, D., van der Maas, H. L. J., & Kievit, R. A. (2012). An agenda for purely confirmatory research. Perspectives on Psychological Science, 7(6), 632638. DOI: 10.1177/1745691612463078
  57. Weston, S. J., & Bakker, M. (2018). Hack-A-Thon: Secondary data template. Retrieved from https://osf.io/djgvw/
  58. Weston, S. J., Ritchie, S. J., Rohrer, J. M., & Przybylski, A. K. (2019). Recommendations for increasing the transparency of analysis of preexisting data sets. Advances in Methods and Practices in Psychological Science. DOI: 10.1177/2515245919848684
  59. Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Mons, B., et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), 160018. DOI: 10.1038/sdata.2016.18
  60. Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 11001122. DOI: 10.1177/1745691617693393
DOI: https://doi.org/10.5334/pb.493 | Journal eISSN: 0033-2879
Language: English
Submitted on: Feb 20, 2019
|
Accepted on: Aug 8, 2019
|
Published on: Aug 22, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Gaëtan Mertens, Angelos-Miltiadis Krypotos, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.