References
- Allen, C., & Mehler, D. M. A. (2019). Open science challenges, benefits and tips in early career and beyond. PLoS Biology, 17(5), e3000246. DOI: 10.1371/journal.pbio.3000246
- Asendorpf, J. B., Conner, M., De Fruyt, F., De Houwer, J., Denissen, J. J. A., Fiedler, K., Wicherts, J. M., et al. (2013). Recommendations for increasing replicability in psychology. European Journal of Personality, 27(2), 108–119. DOI: 10.1002/per.1919
- Bakker, M., van Dijk, A., & Wicherts, J. M. (2012). The rules of the game called psychological science. Perspectives on Psychological Science, 7(6), 543–554. DOI: 10.1177/1745691612459060
- Boehm, U., Annis, J., Frank, M. J., Hawkins, G. E., Heathcote, A., Kellen, D., Wagenmakers, E.-J., et al. (2018). Estimating across-trial variability parameters of the Diffusion Decision Model: Expert advice and recommendations. Journal of Mathematical Psychology, 87, 46–75. DOI: 10.1016/j.jmp.2018.09.004
- Brandt, M. J., IJzerman, H., Dijksterhuis, A., Farach, F. J., Geller, J., Giner-Sorolla, R., van ’t Veer, A., et al. (2014). The Replication Recipe: What makes for a convincing replication? Journal of Experimental Social Psychology, 50(1), 217–224. DOI: 10.1016/j.jesp.2013.10.005
- Chambers, C. D., Feredoes, E., Muthukumaraswamy, S. D., & Etchells, P. J. (2014). Instead of “playing the game” it is time to change the rules: Registered Reports at AIMS Neuroscience and beyond. AIMS Neuroscience, 1(1), 4–17. DOI: 10.3934/Neuroscience.2014.1.4
- Coursol, A., & Wagner, E. E. (1986). Effect of positive findings on submission and acceptance rates: A note on meta-analysis bias. Professional Psychology: Research and Practice, 17(2), 136–137. DOI: 10.1037/0735-7028.17.2.136
- Dawson, M. E., Schell, A. M., & Filion, D. L. (2007).
The electrodermal system . In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (3rd ed., pp. 159–181). New York: Cambridge University Press. - De Groot, A. D. (1969). Methodology: foundations ofinference and research in the behavioral sciences. The Hague: Mouton.
- De Groot, A. D. (2014). The meaning of “significance” for different types of research [translated and annotated by Eric-Jan Wagenmakers, Denny Borsboom, Josine Verhagen, Rogier Kievit, Marjan Bakker, Angelique Cramer, Dora Matzke, Don Mellenbergh, and Han L. J. van der Maas]. Acta Psychologica, 148, 188–194. DOI: 10.1016/j.actpsy.2014.02.001
- Dickersin, K., & Drummond, R. (2003). Registering clinical trials. JAMA, 290(4), 516–523. DOI: 10.1001/jama.290.4.516
- Dutilh, G., Annis, J., Brown, S. D., Cassey, P., Evans, N. J., Grasman, R. P. P. P., Donkin, C., et al. (2018). The quality of response time data inference: A blinded, collaborative assessment of the validity of cognitive models. Psychonomic Bulletin & Review, 1–19. DOI: 10.3758/s13423-017-1417-2
- Easterbrook, P. J., Gopalan, R., Berlin, J. A., & Matthews, D. R. (1991). Publication bias in clinical research. The Lancet, 337(8746), 867–872. DOI: 10.1016/0140-6736(91)90201-Y
- Fanelli, D. (2010). ‘“Positive”’ results increase down the hierarchy of the sciences. PloS One, 5(4). DOI: 10.1371/journal.pone.0010068
- Franco, A., Malhotra, N., & Simonovits, G. (2014). Publication bias in the social sciences: Unlocking the file drawer. Science, 345(6203), 1502–1505. DOI: 10.1126/science.1255484
- Goodman, S. N., Fanelli, D., & Ioannidis, J. P. A. (2016). What does research reproducibility mean? Science Translational Medicine, 8(341), 341ps12–341ps12. DOI: 10.1126/scitranslmed.aaf5027
- Hussey, I., Hughes, S., Lai, C., Ebersole, C. S., Axt, J., & Nosek, B. A. (2019). Attitudes, Identities, and Individual Differences (AIID) study.
https://osf.io/pcjwf/ - Indovina, I., Robbins, T. W., Núñez-Elizalde, A. O., Dunn, B. D., & Bishop, S. J. (2011). Fear-Conditioning Mechanisms Associated with Trait Vulnerability to Anxiety in Humans. Neuron, 69(3), 563–571. DOI: 10.1016/j.neuron.2010.12.034
- Jebb, A. T., Parrigon, S., & Woo, S. E. (2017). Exploratory data analysis as a foundation of inductive research. Human Resource Management Review, 27(2), 265–276. DOI: 10.1016/j.hrmr.2016.08.003
- Kerr, N. L. (1998). HARKing: Hypothesizing after the results are known. Personality and Social Psychology Review, 2(3), 196–217. DOI: 10.1207/s15327957pspr0203_4
- Kidwell, M. C., Lazarević, L. B., Baranski, E., Hardwicke, T. E., Piechowski, S., Falkenberg, L.-S., Nosek, B. A., et al. (2016). Badges to acknowledge open practices: A simple, low-cost, effective method for increasing transparency. PLOS Biology, 14(5), e1002456. DOI: 10.1371/journal.pbio.1002456
- Klein, R. A., Ratliff, K. A., Vianello, M., Adams, R. B., Bahník, Š., Bernstein, M. J., Nosek, B. A., et al. (2014). Investigating variation in replicability. Social Psychology, 45(3), 142–152. DOI: 10.1027/1864-9335/a000178
- Krypotos, A.-M., Arnaudova, I., Effting, M., Kindt, M., & Beckers, T. (2015). Effects of approach-avoidance training on the extinction and return of fear responses. PLOS ONE, 10(7), e0131581. DOI: 10.1371/journal.pone.0131581
- Krypotos, A.-M., Klugkist, I., Mertens, G., & Engelhard, I. M. (2019). A step-by-step guide on preregistration and effective data sharing for psychopathology research. Journal of Abnormal Psychology, 128(6), 517–527. DOI: 10.1037/abn0000424
- Lakens, D., Hilgard, J., & Staaks, J. (2016). On the reproducibility of meta-analyses: Six practical recommendations. BMC Psychology, 1–10. DOI: 10.1186/s40359-016-0126-3
- Lee, M. D., Criss, A., Devezer, B., Donkin, C., Etz, A., Leite, F. P., Vandekerckhove, J., et al. (2019). Robust modeling in cognitive science Michael. Preprint. DOI: 10.31234/osf.io/dmfhk
- Leonelli, S. (2018). Rethinking reproducibility as a criterion for research quality. In Research in the History of Economic Thought and Methodology, 36B, 129–146. DOI: 10.1108/S0743-41542018000036B009
- Levine, T. R., Asada, K. J., & Carpenter, C. (2009). Sample sizes and effect sizes are negatively correlated in meta-analyses: Evidence and implications of a publication bias against nonsignificant findings. Communication Monographs, 76(3), 286–302. DOI: 10.1080/03637750903074685
- Lewandowsky, S., & Bishop, D. (2016). Research integrity: Don’t let transparency damage science. Nature, 529(7587), 459–461. DOI: 10.1038/529459a
- Lilienfeld, S. O. (2017). Psychology’s replication crisis and the grant culture: Righting the ship. Perspectives on Psychological Science, 12(4), 660–664. DOI: 10.1177/1745691616687745
- Lindsay, S. D. (2019). Arguments for preregistering psychology research – Psychonomic Society featured content. Retrieved from
https://featuredcontent.psychonomic.org/arguments-for-preregistering-psychology-research/ - Lindsay, S. D., Simons, D. J., & Lilienfeld, S. O. (2016). Research preregistration 101. APS Observer. Retrieved from
https://www.psychologicalscience.org/observer/research-preregistration-101 - Maner, J. K. (2014). Let’s put our money where our mouth is: If authors are to change their ways, reviewers (and editors) must change with them. Perspectives on Psychological Science, 9(3), 343–351. DOI: 10.1177/1745691614528215
- Mertens, G., & De Houwer, J. (2016). The impact of a context switch and context instructions on the return of verbally conditioned fear. Journal of Behavior Therapy and Experimental Psychiatry, 51, 10–18. DOI: 10.1016/j.jbtep.2015.11.001
- Mertens, G., Kuhn, M., Raes, A. K., Kalisch, R., De Houwer, J., & Lonsdorf, T. B. (2016). Fear expression and return of fear following threat instruction with or without direct contingency experience. Cognition and Emotion, 30(5), 968–984. DOI: 10.1080/02699931.2015.1038219
- Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Group, P.-P., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 1–9. DOI: 10.1186/2046-4053-4-1
- Munafò, M. R., Nosek, B. A., Bishop, D. V. M., Button, K. S., Chambers, C. D., Percie du Sert, N., Ioannidis, J. P. A., et al. (2017). A manifesto for reproducible science. Nature Human Behaviour, 1(1), 0021. DOI: 10.1038/s41562-016-0021
- Murayama, K., Pekrun, R., & Fiedler, K. (2014). Research practices that can prevent an inflation of false-positive rates. Personality and Social Psychology Review, 18(2), 107–118. DOI: 10.1177/1088868313496330
- Muthukrishna, M., & Henrich, J. (2019). A problem in theory. Nature Human Behaviour. DOI: 10.1038/s41562-018-0522-1
- Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler, S. J., Yarkoni, T., et al. (2015). Promoting an open research culture. Science, 348(6242), 1422–1425. DOI: 10.1126/science.aab2374
- Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716–aac4716. DOI: 10.1126/science.aac4716
- Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86(3), 638–641. DOI: 10.1037/0033-2909.86.3.638
- Schimmack, U. (2012). The ironic effect of significant results on the credibility of multiple-study articles. Psychological Methods, 17(4), 551–566. DOI: 10.1037/a0029487
- Shiffrin, R. (2019). Complexity of science v. #PSprereg? Retrieved from
https://featuredcontent.psychonomic.org/complexity-of-science-v-psprereg/ - Silberzahn, R., Uhlmann, E. L., Martin, D. P., Anselmi, P., Aust, F., Awtrey, E., Nosek, B. A., et al. (2018). Many analysts, one data set: Making transparent how variations in analytic choices affect results. Advances in Methods and Practices in Psychological Science, 1(3), 337–356. DOI: 10.1177/2515245917747646
- Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-Positive Psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366. DOI: 10.1177/0956797611417632
- Spielberger, C. D., Gorsuch, R. L., & Lushene, R. E. (1970). STAI manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.
- Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). Increasing transparency through a multiverse analysis. Perspectives on Psychological Science, 11(5), 702–712. DOI: 10.1177/1745691616658637
- Syed, M., & Donnellan, B. (2018). Developing pre-registration plans for secondary data analysis – DEVSEC18 workshop. Retrieved from
https://osf.io/j25pn/ - Szucs, D., & Ioannidis, J. P. A. (2017). Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. PLOS Biology, 15(3), e2000797. DOI: 10.1371/journal.pbio.2000797
- Tabbert, K., Merz, C. J., Klucken, T., Schweckendiek, J., Vaitl, D., Wolf, O. T., & Stark, R. (2011). Influence of contingency awareness on neural, electrodermal and evaluative responses during fear conditioning. Social Cognitive and Affective Neuroscience, 6(4), 495–506. DOI: 10.1093/scan/nsq070
- van ’t Veer, A. E., & Giner-Sorolla, R. (2016). Pre-registration in social psychology—A discussion and suggested template. Journal of Experimental Social Psychology, 67, 2–12. DOI: 10.1016/j.jesp.2016.03.004
- Veldkamp, C. L. S., Bakker, M., van Assen, M. A. L. M., Crompvoets, E. A. V., Ong, H. H., Nosek, B. A., Wicherts, J. M., et al. (2018). Ensuring the quality and specificity of preregistrations. Preprint, 1–30. DOI: 10.31234/osf.io/cdgyh
- Wagenmakers, E. J., & Dutilh, G. (2016). Seven selfish reasons for preregistration. APS Observer, 29(9). Retrieved from
https://www.psychologicalscience.org/observer/seven-selfish-reasons-for-preregistration - Wagenmakers, E. J., Wetzels, R., Borsboom, D., & van der Maas, H. L. J. (2011). Why psychologists must change the way they analyze their data: The case of psi: Comment on Bem (2011). Journal of Personality and Social Psychology, 100(3), 426–432. DOI: 10.1037/a0022790
- Wagenmakers, E. J., Wetzels, R., Borsboom, D., van der Maas, H. L. J., & Kievit, R. A. (2012). An agenda for purely confirmatory research. Perspectives on Psychological Science, 7(6), 632–638. DOI: 10.1177/1745691612463078
- Weston, S. J., & Bakker, M. (2018). Hack-A-Thon: Secondary data template. Retrieved from
https://osf.io/djgvw/ - Weston, S. J., Ritchie, S. J., Rohrer, J. M., & Przybylski, A. K. (2019). Recommendations for increasing the transparency of analysis of preexisting data sets. Advances in Methods and Practices in Psychological Science. DOI: 10.1177/2515245919848684
- Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Mons, B., et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), 160018. DOI: 10.1038/sdata.2016.18
- Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122. DOI: 10.1177/1745691617693393
