References
- 1Alankus, G., Lazar, A., May, M., & Kelleher, C. (2010). Towards customizable games for stroke rehabilitation. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2113–2122. DOI: 10.1145/1753326.1753649
- 2Ananiadou, S., Rea, B., Okazaki, N., Procter, R., & Thomas, J. (2009). Supporting Systematic Reviews Using Text Mining. Social Science Computer Review, 27(4), 509–523. DOI: 10.1177/0894439309332293
- 3Appel, L., Appel, E., Bogler, O., Wiseman, M., Cohen, L., Ein, N., Abrams, H. B., & Campos, J. L. (2020). Older Adults With Cognitive and/or Physical Impairments Can Benefit From Immersive Virtual Reality Experiences: A Feasibility Study. Frontiers in Medicine, 6. DOI: 10.3389/fmed.2019.00329
- 4Aravind, G., & Lamontagne, A. (2014). Perceptual and locomotor factors affect obstacle avoidance in persons with visuospatial neglect. Journal of NeuroEngineering and Rehabilitation, 11(38), 1–10. DOI: 10.1186/1743-0003-11-38
- 5Armbrüster, C., Sutter, C., & Ziefle, M. (2007). Notebook input devices put to the age test: The usability of trackpoint and touchpad for middle-aged adults. Ergonomics, 50(3), 426–445. DOI: 10.1080/00140130601127885
- 6Arns, L. L., & Cerney, M. M. (2005). The relationship between age and incidence of cybersickness among immersive environment users. IEEE Proceedings. VR 2005. Virtual Reality, 2005., 267–268. DOI: 10.1109/VR.2005.1492788
- 7Augstein, M., & Neumayr, T. (2019). A Human-Centered Taxonomy of Interaction Modalities and Devices. Interacting with Computers, 31(1), 27–58. DOI: 10.1093/iwc/iwz003
- 8Bernhardt, J., Chan, J., Nicola, I., & Collier, J. M. (2007). Little therapy, little physical activity: Rehabilitation within the first 14 days of organized stroke unit care. Journal of Rehabilitation Medicine, 39, 43–48. DOI: 10.2340/16501977-0013
- 9Bobeth, J., Schrammel, J., Deutsch, S., Klein, M., Drobics, M., Hochleitner, C., & Tscheligi, M. (2014). Tablet, gestures, remote control?: Influence of age on performance and user experience with iTV applications. Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video, 139–146. DOI: 10.1145/2602299.2602315
- 10Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience, 12(12), 752–762. DOI: 10.1038/nrn3122
- 11Borrego, A., Latorre, J., Alcañiz, M., & Llorens, R. (2019). Embodiment and Presence in Virtual Reality After Stroke. A Comparative Study With Healthy Subjects. Frontiers in Neurology, 10(1061), 1–8. DOI: 10.3389/fneur.2019.01061
- 12Botella, C., Fernández-Álvarez, J., Guillén, V., García-Palacios, A., & Baños, R. (2017). Recent Progress in Virtual Reality Exposure Therapy for Phobias: A Systematic Review. Current Psychiatry Reports, 19(7), 42. DOI: 10.1007/s11920-017-0788-4
- 13Briatte, F. (2016). ggnetwork: Geometries to plot Networks with “ggplot2” (0.5.1) [Computer software].
- 14Butts, C. T., Hunter, D., Handcock, M., Bender-deMoll, S., Horner, J., & Wang, L. (2019). Package “network” (1.15) [Computer software].
- 15Chan, E., Foster, S., Sambell, R., & Leong, P. (2018). Clinical efficacy of virtual reality for acute procedural pain management: A systematic review and meta-analysis. PLOS ONE, 13(7),
e0200987 . DOI: 10.1371/journal.pone.0200987 - 16Chaparro, A., Bohan, M., Fernandez, J., Choi, S. D., & Kattel, B. (1999). The impact of age on computer input device use: Psychophysical and physiological measures. International Journal of Industrial Ergonomics, 24(5), 503–513. DOI: 10.1016/S0169-8141(98)00077-8
- 17Cho, K. H., Kim, M. K., Lee, H.-J., & Lee, W. H. (2015). Virtual Reality Training with Cognitive Load Improves Walking Function in Chronic Stroke Patients. The Tohoku Journal of Experimental Medicine, 236(4), 273–280. DOI: 10.1620/tjem.236.273
- 18Christensen, D., Johnsen, S. P., Watt, T., Harder, I., Kirkevold, M., & Andersen, G. (2008). Dimensions of Post-Stroke Fatigue: A Two-Year Follow-Up Study. Cerebrovascular Diseases, 26(2), 134–141. DOI: 10.1159/000139660
- 19Cordes, C., Heutink, J., Brookhuis, K. A., Brouwer, W. H., & Melis-Dankers, B. J. M. (2018). Driving slow motorised vehicles with visual impairment—A simulator study. Cogent Psychology, 5(1), 1485473. DOI: 10.1080/23311908.2018.1485473
- 20Davis, S., Nesbitt, K., & Nalivaiko, E. (2015). Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters. Proceedings of the 11th Australasian Conference on Interactive Entertainment (IE 2015), 167, 1–12.
- 21Didehbani, N., Allen, T., Kandalaft, M., Krawczyk, D., & Chapman, S. (2016). Virtual Reality Social Cognition Training for children with high functioning autism. Computers in Human Behavior, 62, 703–711. DOI: 10.1016/j.chb.2016.04.033
- 22dos Santos, L. F., Christ, O., Mate, K., Schmidt, H., Krueger, J., & Dohle, C. (2016). Movement visualisation in virtual reality rehabilitation of the lower limb: A systematic review. Biomedical Engineering Online, 15, 144. DOI: 10.1186/s12938-016-0289-4
- 23Douiri, A., Rudd, G. A., & Wolfe, C. D. A. (2013). Prevalence of Poststroke Cognitive Impairment. Stroke, 44(1), 138–145. DOI: 10.1161/STROKEAHA.112.670844
- 24Dvorkin, A. Y., Bogey, R. A., Harvey, R. L., & Patton, J. L. (2012). Mapping the Neglected Space Gradients of Detection Revealed by Virtual Reality. Neurorehabilitation and Neural Repair, 26(2), 120–131. DOI: 10.1177/1545968311410068
- 25Edmans, J. A., & Lincoln, N. B. (1987). The frequency of perceptual deficits after stroke. Clinical Rehabilitation, 1(4), 273–281. DOI: 10.1177/030802268905200706
- 26Espárrago, L. G., Castilla-Guerra, L., Moreno, F. M. C., Doblado, R. S., & Hernández, J. M. D. (2015). Post-stroke depression: An update. Neurología (English Edition), 30(1), 23–31. DOI: 10.1016/j.nrleng.2012.06.006
- 27Garrett, B., Taverner, T., Gromala, D., Tao, G., Cordingley, E., & Sun, C. (2018). Virtual Reality Clinical Research: Promises and Challenges. Jmir Serious Games, 6(4),
e10839 . DOI: 10.2196/10839 - 28Gerling, K. M., Dergousoff, K. K., & Mandryk, R. L. (2013). Is Movement Better?: Comparing Sedentary and Motion-based Game Controls for Older Adults. Proceedings of Graphics Interface 2013, 133–140.
http://dl.acm.org/citation.cfm?id=2532129.2532153 - 29Gil-Gómez, J.-A., Lloréns, R., Alcañiz, M., & Colomer, C. (2011). Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: A pilot randomized clinical trial in patients with acquired brain injury. Journal of Neuroengineering and Rehabilitation, 8, 30. DOI: 10.1186/1743-0003-8-30
- 30Hesse, S., & Werner, C. (2003). Poststroke Motor Dysfunction and Spasticity. CNS Drugs, 17(15), 1093–1107. DOI: 10.2165/00023210-200317150-00004
- 31Hochstenbach, J., Prigatano, G., & Mulder, T. (2005). Patients’ and Relatives’ Reports of Disturbances 9 Months After Stroke: Subjective Changes in Physical Functioning, Cognition, Emotion, and Behavior. Archives of Physical Medicine and Rehabilitation, 86(8), 1587–1593. DOI: 10.1016/j.apmr.2004.11.050
- 32Huygelier, H., Schraepen, B., Lafosse, C., Vaes, N., Schillebeeckx, F., Michiels, K., Note, E., Vanden Abeele, V., van Ee, R., & Gillebert, C. R. (2020). An immersive virtual reality game to train spatial attention orientation after stroke: A feasibility study. Applied Neuropsychology: Adult, 1–21. DOI: 10.1080/23279095.2020.1821030
- 33Huygelier, H., Schraepen, B., van Ee, R., Vanden Abeele, V., & Gillebert, C. R. (2019). Acceptance of immersive head-mounted virtual reality in older adults. Scientific Reports, 9(1), 4519. DOI: 10.1038/s41598-019-41200-6
- 34Institute for Health Metrics and Evaluation (IHME). (2018). Findings from the Global Burden of Disease Study 2017. IHME, 2018.
http://www.healthdata.org/policy-report/findings-global-burden-disease-study-2017 - 35Iosa, M., Morone, G., Fusco, A., Bragoni, M., Coiro, P., Multari, M., Venturiero, V., De Angelis, D., Pratesi, L., & Paolucci, S. (2012). Seven Capital Devices for the Future of Stroke Rehabilitation. Stroke Research and Treatment, 2012. DOI: 10.1155/2012/187965
- 36Jaillard, A., Naegele, B., Trabucco-Miguel, S., LeBas, J. F., & Hommel, M. (2009). Hidden Dysfunctioning in Subacute Stroke. Stroke, 40(7), 2473–2479. DOI: 10.1161/STROKEAHA.108.541144
- 37Kalawsky, R. S. (1996). Exploiting Virtual Reality techniques in Education and Training: Technological Issues.
https://ci.nii.ac.jp/naid/10010070775/ - 38Kao, P.-C., Dingwell, J. B., Higginson, J. S., & Binder-Macleod, S. (2014). Dynamic instability during post-stroke hemiparetic walking. Gait & Posture, 40(3), 457–463. DOI: 10.1016/j.gaitpost.2014.05.014
- 39Kardong-Edgren, S. (Suzie), Farra, S. L., Alinier, G., & Young, H. M. (2019). A Call to Unify Definitions of Virtual Reality. Clinical Simulation in Nursing, 31, 28–34. DOI: 10.1016/j.ecns.2019.02.006
- 40Katie, D., Wolfe, C. D. A., Markus, A. B., & Christopher, M. (2009). What Are the Social Consequences of Stroke for Working-Aged Adults? Stroke, 40(6), e431–e440. DOI: 10.1161/STROKEAHA.108.534487
- 41Kauhanen, M.-L., Korpelainen, J. T., Hiltunen, P., Määttä, R., Mononen, H., Brusin, E., Sotaniemi, K. A., & Myllylä, V. V. (2000). Aphasia, Depression, and Non-Verbal Cognitive Impairment in Ischaemic Stroke. Cerebrovascular Diseases, 10(6), 455–461. DOI: 10.1159/000016107
- 42Lang, C. E., MacDonald, J. R., Reisman, D. S., Boyd, L., Kimberley, T. J., Schindler-Ivens, S. M., Hornby, T. G., Ross, S. A., & Scheets, P. L. (2009). Observation of Amounts of Movement Practice Provided During Stroke Rehabilitation. Archives of Physical Medicine and Rehabilitation, 90(10), 1692–1698. DOI: 10.1016/j.apmr.2009.04.005
- 43Langhorne, P., Coupar, F., & Pollock, A. (2009). Motor recovery after stroke: A systematic review. The Lancet Neurology, 8(8), 741–754. DOI: 10.1016/S1474-4422(09)70150-4
- 44Laver, K., George, S., Thomas, S., Deutsch, J. E., & Crotty, M. (2012). Cochrane review: Virtual reality for stroke rehabilitation. European Journal of Physical and Rehabilitation Medicine, 48(3), 523–530. DOI: 10.1002/14651858.CD008349.pub2
- 45Lee, S. H., Jung, H.-Y., Yun, S. J., Oh, B.-M., & Seo, H. G. (2020). Upper Extremity Rehabilitation Using Fully Immersive Virtual Reality Games With a Head Mount Display: A Feasibility Study. PM&R, 12(3), 257–262. DOI: 10.1002/pmrj.12206
- 46Lohse, K. R., Lang, C. E., & Boyd, L. A. (2014). Is More Better? Using Metadata to Explore Dose–Response Relationships in Stroke Rehabilitation. Stroke, 45(7), 2053–2058. DOI: 10.1161/STROKEAHA.114.004695
- 47Makin, S. D. J., Turpin, S., Dennis, M. S., & Wardlaw, J. M. (2013). Cognitive impairment after lacunar stroke: Systematic review and meta-analysis of incidence, prevalence and comparison with other stroke subtypes. Journal of Neurology, Neurosurgery & Psychiatry, 84(8), 893–900. DOI: 10.1136/jnnp-2012-303645
- 48Massetti, T., da Silva, T. D., Crocetta, T. B., Guarnieri, R., de Freitas, B. L., Bianchi Lopes, P., Watson, S., Tonks, J., & de Mello Monteiro, C. B. (2018). The Clinical Utility of Virtual Reality in Neurorehabilitation: A Systematic Review. Journal of Central Nervous System Disease, 10, 1179573518813541. DOI: 10.1177/1179573518813541
- 49Mayo, N. E., Fellows, L. K., Scott, S. C., Cameron, J., & Wood-Dauphinee, S. (2009). A Longitudinal View of Apathy and Its Impact After Stroke. Stroke, 40(10), 3299–3307. DOI: 10.1161/STROKEAHA.109.554410
- 50McDowd, J. M., Filion, D. L., Pohl, P. S., Richards, L. G., & Stiers, W. (2003). Attentional Abilities and Functional Outcomes Following Stroke. The Journals of Gerontology: Series B, 58(1), P45–P53. DOI: 10.1093/geronb/58.1.P45
- 51Melo, M., Vasconcelos-Raposo, J., & Bessa, M. (2018). Presence and cybersickness in immersive content: Effects of content type, exposure time and gender. Computers & Graphics, 71, 159–165. DOI: 10.1016/j.cag.2017.11.007
- 52Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321–1329.
- 53Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: A class of displays on the reality-virtuality continuum. Telemanipulator and Telepresence Technologies, 2351, 282–293. DOI: 10.1117/12.197321
- 54Miller, K. K., Porter, R. E., DeBaun-Sprague, E., Puymbroeck, M. V., & Schmid, A. A. (2017). Exercise after Stroke: Patient Adherence and Beliefs after Discharge from Rehabilitation. Topics in Stroke Rehabilitation, 24(2), 142–148. DOI: 10.1080/10749357.2016.1200292
- 55Mirelman, A., Bonato, P., & Deutsch, J. E. (2009). Effects of Training With a Robot-Virtual Reality System Compared With a Robot Alone on the Gait of Individuals After Stroke. Stroke, 40(1), 169–174. DOI: 10.1161/STROKEAHA.108.516328
- 56Myers, R. L., & Bierig, T. A. (2000). Virtual Reality and Left Hemineglect: A Technology for Assessment and Therapy. CyberPsychology & Behavior, 3(3), 465–468. DOI: 10.1089/10949310050078922
- 57Nelson, L. D., Cicchetti, D., Satz, P., Stern, S., Sowa, M., Cohen, S., Mitrushina, M., & van Gorp, W. (1993). Emotional sequelae of stroke. Neuropsychology, 7(4), 553–560. DOI: 10.1037/0894-4105.7.4.553
- 58Nys, G. M. S., Zandvoort, M. J. E. van, Kort, P. L. M. de, Jansen, B. P. W., Haan, E. H. F. de, & Kappelle, L. J. (2007). Cognitive Disorders in Acute Stroke: Prevalence and Clinical Determinants. Cerebrovascular Diseases, 23(5–6), 408–416. DOI: 10.1159/000101464
- 59Oing, T., & Prescott, J. (2018). Implementations of Virtual Reality for Anxiety-Related Disorders: Systematic Review. JMIR Serious Games, 6(4),
e10965 . DOI: 10.2196/10965 - 60Ong, Y.-H., Brown, M. M., Robinson, P., Plant, G. T., Husain, M., & Leff, A. P. (2012). Read-Right: A “web app” that improves reading speeds in patients with hemianopia. Journal of Neurology, 259(12), 2611–2615. DOI: 10.1007/s00415-012-6549-8
- 61Otterman, N. M., van der Wees, P. J., Bernhardt, J., & Kwakkel, G. (2012). Physical Therapists’ Guideline Adherence on Early Mobilization and Intensity of Practice at Dutch Acute Stroke Units. Stroke, 43(9), 2395–2401. DOI: 10.1161/STROKEAHA.112.660092
- 62Parker, A. M., Lord, R. K., & Needham, D. M. (2013). Increasing the dose of acute rehabilitation: Is there a benefit? BMC Medicine, 11(1), 199. DOI: 10.1186/1741-7015-11-199
- 63Pearce, S. C., Stolwyk, R. J., New, P. W., & Anderson, C. (2016). Sleep disturbance and deficits of sustained attention following stroke. Journal of Clinical and Experimental Neuropsychology, 38(1), 1–11. DOI: 10.1080/13803395.2015.1078295
- 64Pedroli, E., Serino, S., Cipresso, P., Pallavicini, F., & Riva, G. (2015). Assessment and rehabilitation of neglect using virtual reality: A systematic review. Frontiers in Behavioral Neuroscience, 9, 226. DOI: 10.3389/fnbeh.2015.00226
- 65Perez-Marcos, D. (2018). Virtual reality experiences, embodiment, videogames and their dimensions in neurorehabilitation. Journal of Neuroengineering and Rehabilitation, 15, 113. DOI: 10.1186/s12984-018-0461-0
- 66Plechatá, A., Sahula, V., Fayette, D., & Fajnerová, I. (2019). Age-Related Differences With Immersive and Non-immersive Virtual Reality in Memory Assessment. Frontiers in Psychology, 10. DOI: 10.3389/fpsyg.2019.01330
- 67Porcino, T. M., Clua, E., Trevisan, D., Vasconcelos, C. N., & Valente, L. (2017). Minimizing cyber sickness in head mounted display systems: Design guidelines and applications. 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), 1–6. DOI: 10.1109/SeGAH.2017.7939283
- 68Porras, D. C., Siemonsma, P., Inzelberg, R., Zeilig, G., & Plotnik, M. (2018). Advantages of virtual reality in the rehabilitation of balance and gait Systematic review. Neurology, 90(22), 1017–1025. DOI: 10.1212/WNL.0000000000005603
- 69R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
- 70Raghavan, P. (2015). Upper Limb Motor Impairment After Stroke. Physical Medicine and Rehabilitation Clinics, 26(4), 599–610. DOI: 10.1016/j.pmr.2015.06.008
- 71Ramírez-Fernández, C., Morán, A. L., & García-Canseco, E. (2015). Haptic Feedback in Motor Hand Virtual Therapy Increases Precision and Generates Less Mental Workload. Proceedings of the 9th International Conference on Pervasive Computing Technologies for Healthcare. Istanbul, Turkey. DOI: 10.4108/icst.pervasivehealth.2015.260242
- 72Rizzo, A., & Kim, G. J. (2005). A SWOT Analysis of the Field of Virtual Reality Rehabilitation and Therapy. Presence: Teleoperators and Virtual Environments, 14(2), 119–146. DOI: 10.1162/1054746053967094
- 73Rizzo, A. A., Cohen, I., Weiss, P. L., Kim, J. G., Yeh, S. C., Zali, B., & Hwang, J. (2004). Design and development of virtual reality based perceptual-motor rehabilitation scenarios. Conference Proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
IEEE Engineering in Medicine and Biology Society. Annual Conference , 7, 4852–4855. DOI: 10.1109/IEMBS.2004.1404342 - 74Rizzo, A. A., Schultheis, M., Kerns, K. A., & Mateer, C. (2004). Analysis of assets for virtual reality applications in neuropsychology. Neuropsychological Rehabilitation, 14(1–2), 207–239. DOI: 10.1080/09602010343000183
- 75Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual reality in brain damage rehabilitation: Review. Cyberpsychology & Behavior, 8(3), 241–262. DOI: 10.1089/cpb.2005.8.241
- 76Sibley, K. M., Tang, A., Patterson, K. K., Brooks, D., & McIlroy, W. E. (2009). Changes in spatiotemporal gait variables over time during a test of functional capacity after stroke. Journal of NeuroEngineering and Rehabilitation, 6(1), 27. DOI: 10.1186/1743-0003-6-27
- 77Slater, M. (2003). A note on presence terminology. Presence Connect, 3(3), 1–5.
- 78Slobounov, S. M., Ray, W., Johnson, B., Slobounov, E., & Newell, K. M. (2015). Modulation of cortical activity in 2D versus 3D virtual reality environments: An EEG study. International Journal of Psychophysiology, 95(3), 254–260. DOI: 10.1016/j.ijpsycho.2014.11.003
- 79Snaphaan, L., Werf, S. van der, & Leeuw, F.-E. de. (2011). Time course and risk factors of post-stroke fatigue: A prospective cohort study. European Journal of Neurology, 18(4), 611–617. DOI: 10.1111/j.1468-1331.2010.03217.x
- 80Spreij, L. A., Visser-Meily, J. M. A., Sibbel, J., Gosselt, I. K., & Nijboer, T. C. W. (2020). Feasibility and user-experience of virtual reality in neuropsychological assessment following stroke. Neuropsychological Rehabilitation, 1–21. DOI: 10.1080/09602011.2020.1831935
- 81Stanney, K. M., & Hash, P. (1998). Locus of User-Initiated Control in Virtual Environments: Influences on Cybersickness. Presence: Teleoperators and Virtual Environments, 7(5), 447–459. DOI: 10.1162/105474698565848
- 82Steuer, J. (1992). Defining Virtual Reality: Dimensions Determining Telepresence. Journal of Communication, 42(4), 73–93. DOI: 10.1111/j.1460-2466.1992.tb00812.x
- 83Subramanian, S. K., & Levin, M. F. (2011). Viewing medium affects arm motor performance in 3D virtual environments. Journal of NeuroEngineering and Rehabilitation, 8(1), 36. DOI: 10.1186/1743-0003-8-36
- 84Sue-Min, L., Studenski, S., Duncan, P. W., & Subashan, P. (2002). Persisting Consequences of Stroke Measured by the Stroke Impact Scale. Stroke, 33(7), 1840–1844. DOI: 10.1161/01.STR.0000019289.15440.F2
- 85Thomas, J., McNaught, J., & Ananiadou, S. (2011). Applications of text mining within systematic reviews. Research Synthesis Methods, 2(1), 1–14. DOI: 10.1002/jrsm.27
- 86Tiedemann, A., Sherrington, C., Dean, C. M., Rissel, C., Lord, S. R., Kirkham, C., & O’Rourke, S. D. (2012). Predictors of Adherence to a Structured Exercise Program and Physical Activity Participation in Community Dwellers after Stroke. Stroke Research and Treatment, 2012, 1–8. DOI: 10.1155/2012/136525
- 87Tieri, G., Morone, G., Paolucci, S., & Iosa, M. (2018). Virtual reality in cognitive and motor rehabilitation: Facts, fiction and fallacies. Expert Review of Medical Devices, 15(2), 107–117. DOI: 10.1080/17434440.2018.1425613
- 88Tobler-Ammann, B. C., Surer, E., Knols, R. H., Borghese, N. A., & Bruin, E. D. de. (2017). User Perspectives on Exergames Designed to Explore the Hemineglected Space for Stroke Patients With Visuospatial Neglect: Usability Study. JMIR Serious Games, 5(3),
e18 . DOI: 10.2196/games.8013 - 89van den Hoogen, W., Feys, P., Lamers, I., Coninx, K., Notelaers, S., Kerkhofs, L., & IJsselsteijn, W. (2012). Visualizing the third dimension in virtual training environments for neurologically impaired persons: Beneficial or disruptive? Journal of NeuroEngineering and Rehabilitation, 9(1), 73. DOI: 10.1186/1743-0003-9-73
- 90van Kessel, M. E., Geurts, A. C. H., Brouwer, W. H., & Fasotti, L. (2013). Visual Scanning Training for Neglect after Stroke with and without a Computerized Lane Tracking Dual Task. Frontiers in Human Neuroscience, 7, 1–11. DOI: 10.3389/fnhum.2013.00358
- 91van Rooij, M., Lobel, A., Harris, O., Smit, N., & Granic, I. (2016). DEEP: A Biofeedback Virtual Reality Game for Children At-risk for Anxiety. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, 1989–1997. DOI: 10.1145/2851581.2892452
- 92Veerbeek, J. M., Van Wegen, E., Van Peppen, R., Van Der Wees, P. J., Hendriks, E., Rietberg, M., & Kwakkel, G. (2014).
What is the evidence for physical therapy poststroke? A systematic review and meta-analysis . PLoS ONE, 9(2). Scopus. DOI: 10.1371/journal.pone.0087987 - 93Verheyden, G., Nieuwboer, A., De Wit, L., Thijs, V., Dobbelaere, J., Devos, H., Severijns, D., Vanbeveren, S., & De Weerdt, W. (2008). Time Course of Trunk, Arm, Leg, and Functional Recovery After Ischemic Stroke. Neurorehabilitation and Neural Repair, 22(2), 173–179. DOI: 10.1177/1545968307305456
- 94Weber, L. M., Nilsen, D. M., Gillen, G., Yoon, J., & Stein, J. (2019). Immersive virtual reality mirror therapy for upper limb recovery following stroke: A pilot study. American Journal of Physical Medicine & Rehabilitation, 98(9), 783–788. DOI: 10.1097/PHM.0000000000001190
- 95Weech, S., Kenny, S., & Barnett-Cowan, M. (2019). Presence and Cybersickness in Virtual Reality Are Negatively Related: A Review. Frontiers in Psychology, 10. DOI: 10.3389/fpsyg.2019.00158
- 96Wentink, M. M., Meesters, J., Berger, M. A. M., Kloet, A. J. de, Stevens, E., Band, G. P. H., Kromme, C. H., Wolterbeek, R., Goossens, P. H., & Vlieland, T. P. M. V. (2018). Adherence of stroke patients with an online brain training program: The role of health professionals’ support. Topics in Stroke Rehabilitation, 25(5), 359–365. DOI: 10.1080/10749357.2018.1459362
- 97Wiederhold, M. D., & Wiederhold, B. K. (2007). Virtual Reality and Interactive Simulation for Pain Distraction. Pain Medicine, 8(suppl_3), S182–S188. DOI: 10.1111/j.1526-4637.2007.00381.x
- 98Yin, C., Hsueh, Y.-H., Yeh, C.-Y., Lo, H.-C., & Lan, Y.-T. (2016). A Virtual Reality-Cycling Training System for Lower Limb Balance Improvement. BioMed Research International, 2016, 1–10. DOI: 10.1155/2016/9276508
- 99Yu, G., Smith, D., Zhu, H., Guan, Y., & Lam, T. (2017). ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. 8, 28–36. DOI: 10.1093/molbev/msy194
- 100Zeng, N., Pope, Z., Lee, J. E., & Gao, Z. (2018). Virtual Reality Exercise for Anxiety and Depression: A Preliminary Review of Current Research in an Emerging Field. Journal of Clinical Medicine, 7(3), 42. DOI: 10.3390/jcm7030042
