Have a personal or library account? Click to login
The Use of the Term Virtual Reality in Post-Stroke Rehabilitation: A Scoping Review and Commentary Cover

The Use of the Term Virtual Reality in Post-Stroke Rehabilitation: A Scoping Review and Commentary

Open Access
|Jun 2021

References

  1. 1Alankus, G., Lazar, A., May, M., & Kelleher, C. (2010). Towards customizable games for stroke rehabilitation. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 21132122. DOI: 10.1145/1753326.1753649
  2. 2Ananiadou, S., Rea, B., Okazaki, N., Procter, R., & Thomas, J. (2009). Supporting Systematic Reviews Using Text Mining. Social Science Computer Review, 27(4), 509523. DOI: 10.1177/0894439309332293
  3. 3Appel, L., Appel, E., Bogler, O., Wiseman, M., Cohen, L., Ein, N., Abrams, H. B., & Campos, J. L. (2020). Older Adults With Cognitive and/or Physical Impairments Can Benefit From Immersive Virtual Reality Experiences: A Feasibility Study. Frontiers in Medicine, 6. DOI: 10.3389/fmed.2019.00329
  4. 4Aravind, G., & Lamontagne, A. (2014). Perceptual and locomotor factors affect obstacle avoidance in persons with visuospatial neglect. Journal of NeuroEngineering and Rehabilitation, 11(38), 110. DOI: 10.1186/1743-0003-11-38
  5. 5Armbrüster, C., Sutter, C., & Ziefle, M. (2007). Notebook input devices put to the age test: The usability of trackpoint and touchpad for middle-aged adults. Ergonomics, 50(3), 426445. DOI: 10.1080/00140130601127885
  6. 6Arns, L. L., & Cerney, M. M. (2005). The relationship between age and incidence of cybersickness among immersive environment users. IEEE Proceedings. VR 2005. Virtual Reality, 2005., 267268. DOI: 10.1109/VR.2005.1492788
  7. 7Augstein, M., & Neumayr, T. (2019). A Human-Centered Taxonomy of Interaction Modalities and Devices. Interacting with Computers, 31(1), 2758. DOI: 10.1093/iwc/iwz003
  8. 8Bernhardt, J., Chan, J., Nicola, I., & Collier, J. M. (2007). Little therapy, little physical activity: Rehabilitation within the first 14 days of organized stroke unit care. Journal of Rehabilitation Medicine, 39, 4348. DOI: 10.2340/16501977-0013
  9. 9Bobeth, J., Schrammel, J., Deutsch, S., Klein, M., Drobics, M., Hochleitner, C., & Tscheligi, M. (2014). Tablet, gestures, remote control?: Influence of age on performance and user experience with iTV applications. Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video, 139146. DOI: 10.1145/2602299.2602315
  10. 10Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience, 12(12), 752762. DOI: 10.1038/nrn3122
  11. 11Borrego, A., Latorre, J., Alcañiz, M., & Llorens, R. (2019). Embodiment and Presence in Virtual Reality After Stroke. A Comparative Study With Healthy Subjects. Frontiers in Neurology, 10(1061), 18. DOI: 10.3389/fneur.2019.01061
  12. 12Botella, C., Fernández-Álvarez, J., Guillén, V., García-Palacios, A., & Baños, R. (2017). Recent Progress in Virtual Reality Exposure Therapy for Phobias: A Systematic Review. Current Psychiatry Reports, 19(7), 42. DOI: 10.1007/s11920-017-0788-4
  13. 13Briatte, F. (2016). ggnetwork: Geometries to plot Networks with “ggplot2” (0.5.1) [Computer software].
  14. 14Butts, C. T., Hunter, D., Handcock, M., Bender-deMoll, S., Horner, J., & Wang, L. (2019). Package “network” (1.15) [Computer software].
  15. 15Chan, E., Foster, S., Sambell, R., & Leong, P. (2018). Clinical efficacy of virtual reality for acute procedural pain management: A systematic review and meta-analysis. PLOS ONE, 13(7), e0200987. DOI: 10.1371/journal.pone.0200987
  16. 16Chaparro, A., Bohan, M., Fernandez, J., Choi, S. D., & Kattel, B. (1999). The impact of age on computer input device use: Psychophysical and physiological measures. International Journal of Industrial Ergonomics, 24(5), 503513. DOI: 10.1016/S0169-8141(98)00077-8
  17. 17Cho, K. H., Kim, M. K., Lee, H.-J., & Lee, W. H. (2015). Virtual Reality Training with Cognitive Load Improves Walking Function in Chronic Stroke Patients. The Tohoku Journal of Experimental Medicine, 236(4), 273280. DOI: 10.1620/tjem.236.273
  18. 18Christensen, D., Johnsen, S. P., Watt, T., Harder, I., Kirkevold, M., & Andersen, G. (2008). Dimensions of Post-Stroke Fatigue: A Two-Year Follow-Up Study. Cerebrovascular Diseases, 26(2), 134141. DOI: 10.1159/000139660
  19. 19Cordes, C., Heutink, J., Brookhuis, K. A., Brouwer, W. H., & Melis-Dankers, B. J. M. (2018). Driving slow motorised vehicles with visual impairment—A simulator study. Cogent Psychology, 5(1), 1485473. DOI: 10.1080/23311908.2018.1485473
  20. 20Davis, S., Nesbitt, K., & Nalivaiko, E. (2015). Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters. Proceedings of the 11th Australasian Conference on Interactive Entertainment (IE 2015), 167, 112.
  21. 21Didehbani, N., Allen, T., Kandalaft, M., Krawczyk, D., & Chapman, S. (2016). Virtual Reality Social Cognition Training for children with high functioning autism. Computers in Human Behavior, 62, 703711. DOI: 10.1016/j.chb.2016.04.033
  22. 22dos Santos, L. F., Christ, O., Mate, K., Schmidt, H., Krueger, J., & Dohle, C. (2016). Movement visualisation in virtual reality rehabilitation of the lower limb: A systematic review. Biomedical Engineering Online, 15, 144. DOI: 10.1186/s12938-016-0289-4
  23. 23Douiri, A., Rudd, G. A., & Wolfe, C. D. A. (2013). Prevalence of Poststroke Cognitive Impairment. Stroke, 44(1), 138145. DOI: 10.1161/STROKEAHA.112.670844
  24. 24Dvorkin, A. Y., Bogey, R. A., Harvey, R. L., & Patton, J. L. (2012). Mapping the Neglected Space Gradients of Detection Revealed by Virtual Reality. Neurorehabilitation and Neural Repair, 26(2), 120131. DOI: 10.1177/1545968311410068
  25. 25Edmans, J. A., & Lincoln, N. B. (1987). The frequency of perceptual deficits after stroke. Clinical Rehabilitation, 1(4), 273281. DOI: 10.1177/030802268905200706
  26. 26Espárrago, L. G., Castilla-Guerra, L., Moreno, F. M. C., Doblado, R. S., & Hernández, J. M. D. (2015). Post-stroke depression: An update. Neurología (English Edition), 30(1), 2331. DOI: 10.1016/j.nrleng.2012.06.006
  27. 27Garrett, B., Taverner, T., Gromala, D., Tao, G., Cordingley, E., & Sun, C. (2018). Virtual Reality Clinical Research: Promises and Challenges. Jmir Serious Games, 6(4), e10839. DOI: 10.2196/10839
  28. 28Gerling, K. M., Dergousoff, K. K., & Mandryk, R. L. (2013). Is Movement Better?: Comparing Sedentary and Motion-based Game Controls for Older Adults. Proceedings of Graphics Interface 2013, 133140. http://dl.acm.org/citation.cfm?id=2532129.2532153
  29. 29Gil-Gómez, J.-A., Lloréns, R., Alcañiz, M., & Colomer, C. (2011). Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: A pilot randomized clinical trial in patients with acquired brain injury. Journal of Neuroengineering and Rehabilitation, 8, 30. DOI: 10.1186/1743-0003-8-30
  30. 30Hesse, S., & Werner, C. (2003). Poststroke Motor Dysfunction and Spasticity. CNS Drugs, 17(15), 10931107. DOI: 10.2165/00023210-200317150-00004
  31. 31Hochstenbach, J., Prigatano, G., & Mulder, T. (2005). Patients’ and Relatives’ Reports of Disturbances 9 Months After Stroke: Subjective Changes in Physical Functioning, Cognition, Emotion, and Behavior. Archives of Physical Medicine and Rehabilitation, 86(8), 15871593. DOI: 10.1016/j.apmr.2004.11.050
  32. 32Huygelier, H., Schraepen, B., Lafosse, C., Vaes, N., Schillebeeckx, F., Michiels, K., Note, E., Vanden Abeele, V., van Ee, R., & Gillebert, C. R. (2020). An immersive virtual reality game to train spatial attention orientation after stroke: A feasibility study. Applied Neuropsychology: Adult, 121. DOI: 10.1080/23279095.2020.1821030
  33. 33Huygelier, H., Schraepen, B., van Ee, R., Vanden Abeele, V., & Gillebert, C. R. (2019). Acceptance of immersive head-mounted virtual reality in older adults. Scientific Reports, 9(1), 4519. DOI: 10.1038/s41598-019-41200-6
  34. 34Institute for Health Metrics and Evaluation (IHME). (2018). Findings from the Global Burden of Disease Study 2017. IHME, 2018. http://www.healthdata.org/policy-report/findings-global-burden-disease-study-2017
  35. 35Iosa, M., Morone, G., Fusco, A., Bragoni, M., Coiro, P., Multari, M., Venturiero, V., De Angelis, D., Pratesi, L., & Paolucci, S. (2012). Seven Capital Devices for the Future of Stroke Rehabilitation. Stroke Research and Treatment, 2012. DOI: 10.1155/2012/187965
  36. 36Jaillard, A., Naegele, B., Trabucco-Miguel, S., LeBas, J. F., & Hommel, M. (2009). Hidden Dysfunctioning in Subacute Stroke. Stroke, 40(7), 24732479. DOI: 10.1161/STROKEAHA.108.541144
  37. 37Kalawsky, R. S. (1996). Exploiting Virtual Reality techniques in Education and Training: Technological Issues. https://ci.nii.ac.jp/naid/10010070775/
  38. 38Kao, P.-C., Dingwell, J. B., Higginson, J. S., & Binder-Macleod, S. (2014). Dynamic instability during post-stroke hemiparetic walking. Gait & Posture, 40(3), 457463. DOI: 10.1016/j.gaitpost.2014.05.014
  39. 39Kardong-Edgren, S. (Suzie), Farra, S. L., Alinier, G., & Young, H. M. (2019). A Call to Unify Definitions of Virtual Reality. Clinical Simulation in Nursing, 31, 2834. DOI: 10.1016/j.ecns.2019.02.006
  40. 40Katie, D., Wolfe, C. D. A., Markus, A. B., & Christopher, M. (2009). What Are the Social Consequences of Stroke for Working-Aged Adults? Stroke, 40(6), e431e440. DOI: 10.1161/STROKEAHA.108.534487
  41. 41Kauhanen, M.-L., Korpelainen, J. T., Hiltunen, P., Määttä, R., Mononen, H., Brusin, E., Sotaniemi, K. A., & Myllylä, V. V. (2000). Aphasia, Depression, and Non-Verbal Cognitive Impairment in Ischaemic Stroke. Cerebrovascular Diseases, 10(6), 455461. DOI: 10.1159/000016107
  42. 42Lang, C. E., MacDonald, J. R., Reisman, D. S., Boyd, L., Kimberley, T. J., Schindler-Ivens, S. M., Hornby, T. G., Ross, S. A., & Scheets, P. L. (2009). Observation of Amounts of Movement Practice Provided During Stroke Rehabilitation. Archives of Physical Medicine and Rehabilitation, 90(10), 16921698. DOI: 10.1016/j.apmr.2009.04.005
  43. 43Langhorne, P., Coupar, F., & Pollock, A. (2009). Motor recovery after stroke: A systematic review. The Lancet Neurology, 8(8), 741754. DOI: 10.1016/S1474-4422(09)70150-4
  44. 44Laver, K., George, S., Thomas, S., Deutsch, J. E., & Crotty, M. (2012). Cochrane review: Virtual reality for stroke rehabilitation. European Journal of Physical and Rehabilitation Medicine, 48(3), 523530. DOI: 10.1002/14651858.CD008349.pub2
  45. 45Lee, S. H., Jung, H.-Y., Yun, S. J., Oh, B.-M., & Seo, H. G. (2020). Upper Extremity Rehabilitation Using Fully Immersive Virtual Reality Games With a Head Mount Display: A Feasibility Study. PM&R, 12(3), 257262. DOI: 10.1002/pmrj.12206
  46. 46Lohse, K. R., Lang, C. E., & Boyd, L. A. (2014). Is More Better? Using Metadata to Explore Dose–Response Relationships in Stroke Rehabilitation. Stroke, 45(7), 20532058. DOI: 10.1161/STROKEAHA.114.004695
  47. 47Makin, S. D. J., Turpin, S., Dennis, M. S., & Wardlaw, J. M. (2013). Cognitive impairment after lacunar stroke: Systematic review and meta-analysis of incidence, prevalence and comparison with other stroke subtypes. Journal of Neurology, Neurosurgery & Psychiatry, 84(8), 893900. DOI: 10.1136/jnnp-2012-303645
  48. 48Massetti, T., da Silva, T. D., Crocetta, T. B., Guarnieri, R., de Freitas, B. L., Bianchi Lopes, P., Watson, S., Tonks, J., & de Mello Monteiro, C. B. (2018). The Clinical Utility of Virtual Reality in Neurorehabilitation: A Systematic Review. Journal of Central Nervous System Disease, 10, 1179573518813541. DOI: 10.1177/1179573518813541
  49. 49Mayo, N. E., Fellows, L. K., Scott, S. C., Cameron, J., & Wood-Dauphinee, S. (2009). A Longitudinal View of Apathy and Its Impact After Stroke. Stroke, 40(10), 32993307. DOI: 10.1161/STROKEAHA.109.554410
  50. 50McDowd, J. M., Filion, D. L., Pohl, P. S., Richards, L. G., & Stiers, W. (2003). Attentional Abilities and Functional Outcomes Following Stroke. The Journals of Gerontology: Series B, 58(1), P45P53. DOI: 10.1093/geronb/58.1.P45
  51. 51Melo, M., Vasconcelos-Raposo, J., & Bessa, M. (2018). Presence and cybersickness in immersive content: Effects of content type, exposure time and gender. Computers & Graphics, 71, 159165. DOI: 10.1016/j.cag.2017.11.007
  52. 52Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 13211329.
  53. 53Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: A class of displays on the reality-virtuality continuum. Telemanipulator and Telepresence Technologies, 2351, 282293. DOI: 10.1117/12.197321
  54. 54Miller, K. K., Porter, R. E., DeBaun-Sprague, E., Puymbroeck, M. V., & Schmid, A. A. (2017). Exercise after Stroke: Patient Adherence and Beliefs after Discharge from Rehabilitation. Topics in Stroke Rehabilitation, 24(2), 142148. DOI: 10.1080/10749357.2016.1200292
  55. 55Mirelman, A., Bonato, P., & Deutsch, J. E. (2009). Effects of Training With a Robot-Virtual Reality System Compared With a Robot Alone on the Gait of Individuals After Stroke. Stroke, 40(1), 169174. DOI: 10.1161/STROKEAHA.108.516328
  56. 56Myers, R. L., & Bierig, T. A. (2000). Virtual Reality and Left Hemineglect: A Technology for Assessment and Therapy. CyberPsychology & Behavior, 3(3), 465468. DOI: 10.1089/10949310050078922
  57. 57Nelson, L. D., Cicchetti, D., Satz, P., Stern, S., Sowa, M., Cohen, S., Mitrushina, M., & van Gorp, W. (1993). Emotional sequelae of stroke. Neuropsychology, 7(4), 553560. DOI: 10.1037/0894-4105.7.4.553
  58. 58Nys, G. M. S., Zandvoort, M. J. E. van, Kort, P. L. M. de, Jansen, B. P. W., Haan, E. H. F. de, & Kappelle, L. J. (2007). Cognitive Disorders in Acute Stroke: Prevalence and Clinical Determinants. Cerebrovascular Diseases, 23(5–6), 408416. DOI: 10.1159/000101464
  59. 59Oing, T., & Prescott, J. (2018). Implementations of Virtual Reality for Anxiety-Related Disorders: Systematic Review. JMIR Serious Games, 6(4), e10965. DOI: 10.2196/10965
  60. 60Ong, Y.-H., Brown, M. M., Robinson, P., Plant, G. T., Husain, M., & Leff, A. P. (2012). Read-Right: A “web app” that improves reading speeds in patients with hemianopia. Journal of Neurology, 259(12), 26112615. DOI: 10.1007/s00415-012-6549-8
  61. 61Otterman, N. M., van der Wees, P. J., Bernhardt, J., & Kwakkel, G. (2012). Physical Therapists’ Guideline Adherence on Early Mobilization and Intensity of Practice at Dutch Acute Stroke Units. Stroke, 43(9), 23952401. DOI: 10.1161/STROKEAHA.112.660092
  62. 62Parker, A. M., Lord, R. K., & Needham, D. M. (2013). Increasing the dose of acute rehabilitation: Is there a benefit? BMC Medicine, 11(1), 199. DOI: 10.1186/1741-7015-11-199
  63. 63Pearce, S. C., Stolwyk, R. J., New, P. W., & Anderson, C. (2016). Sleep disturbance and deficits of sustained attention following stroke. Journal of Clinical and Experimental Neuropsychology, 38(1), 111. DOI: 10.1080/13803395.2015.1078295
  64. 64Pedroli, E., Serino, S., Cipresso, P., Pallavicini, F., & Riva, G. (2015). Assessment and rehabilitation of neglect using virtual reality: A systematic review. Frontiers in Behavioral Neuroscience, 9, 226. DOI: 10.3389/fnbeh.2015.00226
  65. 65Perez-Marcos, D. (2018). Virtual reality experiences, embodiment, videogames and their dimensions in neurorehabilitation. Journal of Neuroengineering and Rehabilitation, 15, 113. DOI: 10.1186/s12984-018-0461-0
  66. 66Plechatá, A., Sahula, V., Fayette, D., & Fajnerová, I. (2019). Age-Related Differences With Immersive and Non-immersive Virtual Reality in Memory Assessment. Frontiers in Psychology, 10. DOI: 10.3389/fpsyg.2019.01330
  67. 67Porcino, T. M., Clua, E., Trevisan, D., Vasconcelos, C. N., & Valente, L. (2017). Minimizing cyber sickness in head mounted display systems: Design guidelines and applications. 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), 16. DOI: 10.1109/SeGAH.2017.7939283
  68. 68Porras, D. C., Siemonsma, P., Inzelberg, R., Zeilig, G., & Plotnik, M. (2018). Advantages of virtual reality in the rehabilitation of balance and gait Systematic review. Neurology, 90(22), 10171025. DOI: 10.1212/WNL.0000000000005603
  69. 69R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
  70. 70Raghavan, P. (2015). Upper Limb Motor Impairment After Stroke. Physical Medicine and Rehabilitation Clinics, 26(4), 599610. DOI: 10.1016/j.pmr.2015.06.008
  71. 71Ramírez-Fernández, C., Morán, A. L., & García-Canseco, E. (2015). Haptic Feedback in Motor Hand Virtual Therapy Increases Precision and Generates Less Mental Workload. Proceedings of the 9th International Conference on Pervasive Computing Technologies for Healthcare. Istanbul, Turkey. DOI: 10.4108/icst.pervasivehealth.2015.260242
  72. 72Rizzo, A., & Kim, G. J. (2005). A SWOT Analysis of the Field of Virtual Reality Rehabilitation and Therapy. Presence: Teleoperators and Virtual Environments, 14(2), 119146. DOI: 10.1162/1054746053967094
  73. 73Rizzo, A. A., Cohen, I., Weiss, P. L., Kim, J. G., Yeh, S. C., Zali, B., & Hwang, J. (2004). Design and development of virtual reality based perceptual-motor rehabilitation scenarios. Conference Proceedings: … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 7, 48524855. DOI: 10.1109/IEMBS.2004.1404342
  74. 74Rizzo, A. A., Schultheis, M., Kerns, K. A., & Mateer, C. (2004). Analysis of assets for virtual reality applications in neuropsychology. Neuropsychological Rehabilitation, 14(1–2), 207239. DOI: 10.1080/09602010343000183
  75. 75Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual reality in brain damage rehabilitation: Review. Cyberpsychology & Behavior, 8(3), 241262. DOI: 10.1089/cpb.2005.8.241
  76. 76Sibley, K. M., Tang, A., Patterson, K. K., Brooks, D., & McIlroy, W. E. (2009). Changes in spatiotemporal gait variables over time during a test of functional capacity after stroke. Journal of NeuroEngineering and Rehabilitation, 6(1), 27. DOI: 10.1186/1743-0003-6-27
  77. 77Slater, M. (2003). A note on presence terminology. Presence Connect, 3(3), 15.
  78. 78Slobounov, S. M., Ray, W., Johnson, B., Slobounov, E., & Newell, K. M. (2015). Modulation of cortical activity in 2D versus 3D virtual reality environments: An EEG study. International Journal of Psychophysiology, 95(3), 254260. DOI: 10.1016/j.ijpsycho.2014.11.003
  79. 79Snaphaan, L., Werf, S. van der, & Leeuw, F.-E. de. (2011). Time course and risk factors of post-stroke fatigue: A prospective cohort study. European Journal of Neurology, 18(4), 611617. DOI: 10.1111/j.1468-1331.2010.03217.x
  80. 80Spreij, L. A., Visser-Meily, J. M. A., Sibbel, J., Gosselt, I. K., & Nijboer, T. C. W. (2020). Feasibility and user-experience of virtual reality in neuropsychological assessment following stroke. Neuropsychological Rehabilitation, 121. DOI: 10.1080/09602011.2020.1831935
  81. 81Stanney, K. M., & Hash, P. (1998). Locus of User-Initiated Control in Virtual Environments: Influences on Cybersickness. Presence: Teleoperators and Virtual Environments, 7(5), 447459. DOI: 10.1162/105474698565848
  82. 82Steuer, J. (1992). Defining Virtual Reality: Dimensions Determining Telepresence. Journal of Communication, 42(4), 7393. DOI: 10.1111/j.1460-2466.1992.tb00812.x
  83. 83Subramanian, S. K., & Levin, M. F. (2011). Viewing medium affects arm motor performance in 3D virtual environments. Journal of NeuroEngineering and Rehabilitation, 8(1), 36. DOI: 10.1186/1743-0003-8-36
  84. 84Sue-Min, L., Studenski, S., Duncan, P. W., & Subashan, P. (2002). Persisting Consequences of Stroke Measured by the Stroke Impact Scale. Stroke, 33(7), 18401844. DOI: 10.1161/01.STR.0000019289.15440.F2
  85. 85Thomas, J., McNaught, J., & Ananiadou, S. (2011). Applications of text mining within systematic reviews. Research Synthesis Methods, 2(1), 114. DOI: 10.1002/jrsm.27
  86. 86Tiedemann, A., Sherrington, C., Dean, C. M., Rissel, C., Lord, S. R., Kirkham, C., & O’Rourke, S. D. (2012). Predictors of Adherence to a Structured Exercise Program and Physical Activity Participation in Community Dwellers after Stroke. Stroke Research and Treatment, 2012, 18. DOI: 10.1155/2012/136525
  87. 87Tieri, G., Morone, G., Paolucci, S., & Iosa, M. (2018). Virtual reality in cognitive and motor rehabilitation: Facts, fiction and fallacies. Expert Review of Medical Devices, 15(2), 107117. DOI: 10.1080/17434440.2018.1425613
  88. 88Tobler-Ammann, B. C., Surer, E., Knols, R. H., Borghese, N. A., & Bruin, E. D. de. (2017). User Perspectives on Exergames Designed to Explore the Hemineglected Space for Stroke Patients With Visuospatial Neglect: Usability Study. JMIR Serious Games, 5(3), e18. DOI: 10.2196/games.8013
  89. 89van den Hoogen, W., Feys, P., Lamers, I., Coninx, K., Notelaers, S., Kerkhofs, L., & IJsselsteijn, W. (2012). Visualizing the third dimension in virtual training environments for neurologically impaired persons: Beneficial or disruptive? Journal of NeuroEngineering and Rehabilitation, 9(1), 73. DOI: 10.1186/1743-0003-9-73
  90. 90van Kessel, M. E., Geurts, A. C. H., Brouwer, W. H., & Fasotti, L. (2013). Visual Scanning Training for Neglect after Stroke with and without a Computerized Lane Tracking Dual Task. Frontiers in Human Neuroscience, 7, 111. DOI: 10.3389/fnhum.2013.00358
  91. 91van Rooij, M., Lobel, A., Harris, O., Smit, N., & Granic, I. (2016). DEEP: A Biofeedback Virtual Reality Game for Children At-risk for Anxiety. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, 19891997. DOI: 10.1145/2851581.2892452
  92. 92Veerbeek, J. M., Van Wegen, E., Van Peppen, R., Van Der Wees, P. J., Hendriks, E., Rietberg, M., & Kwakkel, G. (2014). What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS ONE, 9(2). Scopus. DOI: 10.1371/journal.pone.0087987
  93. 93Verheyden, G., Nieuwboer, A., De Wit, L., Thijs, V., Dobbelaere, J., Devos, H., Severijns, D., Vanbeveren, S., & De Weerdt, W. (2008). Time Course of Trunk, Arm, Leg, and Functional Recovery After Ischemic Stroke. Neurorehabilitation and Neural Repair, 22(2), 173179. DOI: 10.1177/1545968307305456
  94. 94Weber, L. M., Nilsen, D. M., Gillen, G., Yoon, J., & Stein, J. (2019). Immersive virtual reality mirror therapy for upper limb recovery following stroke: A pilot study. American Journal of Physical Medicine & Rehabilitation, 98(9), 783788. DOI: 10.1097/PHM.0000000000001190
  95. 95Weech, S., Kenny, S., & Barnett-Cowan, M. (2019). Presence and Cybersickness in Virtual Reality Are Negatively Related: A Review. Frontiers in Psychology, 10. DOI: 10.3389/fpsyg.2019.00158
  96. 96Wentink, M. M., Meesters, J., Berger, M. A. M., Kloet, A. J. de, Stevens, E., Band, G. P. H., Kromme, C. H., Wolterbeek, R., Goossens, P. H., & Vlieland, T. P. M. V. (2018). Adherence of stroke patients with an online brain training program: The role of health professionals’ support. Topics in Stroke Rehabilitation, 25(5), 359365. DOI: 10.1080/10749357.2018.1459362
  97. 97Wiederhold, M. D., & Wiederhold, B. K. (2007). Virtual Reality and Interactive Simulation for Pain Distraction. Pain Medicine, 8(suppl_3), S182–S188. DOI: 10.1111/j.1526-4637.2007.00381.x
  98. 98Yin, C., Hsueh, Y.-H., Yeh, C.-Y., Lo, H.-C., & Lan, Y.-T. (2016). A Virtual Reality-Cycling Training System for Lower Limb Balance Improvement. BioMed Research International, 2016, 110. DOI: 10.1155/2016/9276508
  99. 99Yu, G., Smith, D., Zhu, H., Guan, Y., & Lam, T. (2017). ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. 8, 2836. DOI: 10.1093/molbev/msy194
  100. 100Zeng, N., Pope, Z., Lee, J. E., & Gao, Z. (2018). Virtual Reality Exercise for Anxiety and Depression: A Preliminary Review of Current Research in an Emerging Field. Journal of Clinical Medicine, 7(3), 42. DOI: 10.3390/jcm7030042
DOI: https://doi.org/10.5334/pb.1033 | Journal eISSN: 0033-2879
Language: English
Submitted on: Oct 9, 2020
Accepted on: May 20, 2021
Published on: Jun 3, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Hanne Huygelier, Emily Mattheus, Vero Vanden Abeele, Raymond van Ee, Céline R. Gillebert, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.