Have a personal or library account? Click to login
Impact of Sensor-Axis Combinations on Machine Learning Accuracy for Human Activity Recognition Using Accelerometer Data in Clinical Settings Cover

Impact of Sensor-Axis Combinations on Machine Learning Accuracy for Human Activity Recognition Using Accelerometer Data in Clinical Settings

Open Access
|May 2025

References

  1. Agustí, A., Celli, B. R., Criner, G. J., Halpin, D., Anzueto, A., Barnes, P., Bourbeau, J., Han, M. K., Martinez, F. J., Montes de Oca, M., Mortimer, K., Papi, A., Pavord, I., Roche, N., Salvi, S., Sin, D. D., Singh, D., Stockley, R., López Varela, M. V., Wedzicha, J. A., & Vogelmeier, C. F. (2023). Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. European Respiratory Journal, 61(4). 10.1183/13993003.00239-2023
  2. Ankita, S., Rani, S., Babbar, H., Coleman, S., Singh, A., & Aljahdali, H. M. (2021). An efficient and lightweight deep learning model for human activity recognition using smartphones. Sensors, 21, 3845. 10.3390/s21113845
  3. Bozkurt, F. (2022). A Comparative Study on Classifying Human Activities Using Classical Machine and Deep Learning Methods. Arabian Journal of Science and Engineering, 47(2), 15071521. 10.1007/s13369-021-06008-5
  4. Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 532. 10.1023/A:1010933404324
  5. Bull, K., He, Y. H., Jejjala, V., & Mishra, C. (2018). Machine Learning CICY Threefolds. Physics Letters B, 785, 6572. 10.1016/j.physletb.2018.08.008
  6. Carrington, A. M., Manuel, D. G., Fieguth, P. W., Ramsay, T., Osmani, V., Wernly, B., Bennett, C., Hawken, S., Magwood, O., Sheikh, Y., McInnes, M., & Holzinger, A. (2023). Deep ROC Analysis and AUC as Balanced Average Accuracy, for Improved Classifier Selection, Audit and Explanation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1), 329341. 10.1109/TPAMI.2022.3145392
  7. Chung, E. K. (2013). Ambulatory Electrocardiography: Holter Monitor Electrocardiography. Springer: Science+Business Media, p. 7.
  8. Eakin, E. G., Resnikoff, P. M., Prewitt, L. M., Ries, A. L., & Kaplan, R. M. (1998). Validation of A New Dyspnea Measure. the UCSD Shortness of Breath Questionnaire. Chest, 113(3), 619624. 10.1378/chest.113.3.619
  9. Fischer, J. E., Bachmann, L. M., & Jaeschke, R. (2003). A Readers’ Guide to the Interpretation of Diagnostic Test Properties: Clinical Example of Sepsis. Intensive Care Medicine, 29(7), 10431051. 10.1007/s00134-003-1761-8
  10. Garlant, J. A., Ammann, K. R., & Slepian, M. J. (2018). Stretchable Electronic Wearable Motion Sensors Delineate Signatures of Human Motion Tasks. ASAIO Journal, 64(3), 351359. 10.1097/MAT.0000000000000784
  11. Gholamiangonabadi, D., Kiselov, N., & Grolinger, K. (2020). Deep Neural Networks for Human Activity Recognition with Wearable Sensors: Leave-One-Subject-Out Cross-Validation for Model Selection. IEEE Access, 8, 133982133994. 10.1109/ACCESS.2020.3010715
  12. Hendry, D., Chai, K., Campbell, A., Hopper, L., O’Sullivan, P., & Straker, L. (2020). Development of a Human Activity Recognition System for Ballet Tasks. Sports Med – Open, 6(10). 10.1186/s40798-020-0237-5
  13. Holland, A. E., Spruit, M. A., Troosters, T., Puhan, M. A., Pepin, V., Saey, D., McCormack, M. C., Carlin, B. W., Sciurba, F. C., Pitta, F., Wanger, J., MacIntyre, N., Kaminsky, D. A., Culver, B. H., Revill, S. M., Hernandes, N. A., Andrianopoulos, V., Camillo, C. A., Mitchell, K. E., Lee, A. L., Hill, C. J., & Singh, S. J. (2014). An Official European Respiratory Society/American Thoracic Society Technical Standard: Field Walking Tests in Chronic Respiratory Disease. European Respiratory Journal, 44(6), 14281446. 10.1183/09031936.00150314
  14. Huang, E. J., Yan, K., & Onnela, J. P. (2022). Smartphone-Based Activity Recognition Using Multistream Movelets Combining Accelerometer and Gyroscope Data. Sensors, 22(7). 10.3390/s22072618
  15. Jerri, A. J. (1977). The Shannon sampling theorem—Its various extensions and applications: A tutorial review. Proceedings of the IEEE, 65(11), 15651596. 10.1109/PROC.1977.10771
  16. Kavuncuoğlu, E., Özdemir, A. T., & Uzunhisarcıklı, E. (2024). Investigating the Impact of Sensor Axis Combinations on Activity Recognition and Fall Detection: An Empirical Study. Multimedia Tools and Applications. 10.1007/s11042-024-20136-8
  17. Kim, N. Y., Han, J., Hwang, Y. I., Park, Y. B., Park, S. J., Park, J., Jung, K. S., Yoo, K. H., Lee, J. H., & Lee, C. Y. (2024). Components of the Chronic Obstructive Pulmonary Disease Assessment Test Associated with the Exacerbation of Severe Chronic Obstructive Pulmonary Disease Patients. Respiration, 103(6), 326335. 10.1159/000538330
  18. Leotta, M., Fasciglione, A., & Verri, A. (2021). Daily Living Activity Recognition Using Wearable Devices: A Features-Rich Dataset and a Novel Approach. Pattern Recognition. ICPR International Workshops and Challenges, 12662. 10.1007/978-3-030-68790-8_15
  19. Liu, S., Gao, R. X., & Freedson, P. S. (2012). Computational Methods for Estimating Energy Expenditure in Human Physical Activities. Medicine & Science in Sports & Exercise, 44(11), 21382146. 10.1249/MSS.0b013e31825e825a
  20. Lowe, S. A., & Ólaighin, G. (2014). Monitoring human health behaviour in one’s living environment: a technological review. Medical Engineering and Physics, 36(2), 14768. 10.1016/j.medengphy.2013.11.010
  21. Luckhurst, J., Hughes, C., & Shelley, B. (2024). Classifying physical activity levels using Mean Amplitude Deviation in adults using a chest worn accelerometer: validation of the Vivalink ECG Patch. BMC Sports Science, Medicine and Rehabilitation, 16, 212. 10.1186/s13102-024-00991-6
  22. Matsuyama, H., Hiroi, K., Kaji, K., Yonezawa, T., & Kawaguchi, N. (2019). Ballroom dance step type recognition by random forest using video and wearable sensor. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, pp. 774780. 10.1145/3341162.3344852
  23. Niazi, A. H., Yazdansepas, D., Gay, J. L., Maier, F. W., Ramaswamy, L., Rasheed, K., & Buman, M. (2017). Statistical analysis of window sizes and sampling rates in human activity recognition. In: In: Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017) – HEALTHINF, pp. 319325. 10.5220/0006148503190325
  24. O’Brien, C., & Min, C. H. (2022). Classification of Various Workout Motions Using Wearable Sensors. In: 2022 IEEE World AI IoT Congress (AIIoT), pp. 442446. 10.1109/AIIoT54504.2022.9817337
  25. Panahandeh, G., Mohammadiha, N., Leijon, A., & Händel, P. (2012). Chest-mounted inertial measurement unit for pedestrian motion classification using continuous hidden Markov model. In: Proceedings of 2012 IEEE International Instrumentation and Measurement Technology Conference, pp. 991995. 10.1109/I2MTC.2012.6229380
  26. Ren, Y., Liu, M., Yang, Y., Mao, L., & Chen, K. (2024). Clinical Human Activity Recognition Based on a Wearable Patch of Combined Tri-axial ACC and ECG Sensors. Digital Health, 10, 20552076231223804. 10.1177/20552076231223804
  27. Sakai, K., Oishi, K., Miwa, M., Kumagai, H., & Hirooka, H. (2019). Behavior classification of goats using 9-axis multi sensors: The effect of imbalanced datasets on classification performance. Computers and Electronics in Agriculture, 166, 105027. 10.1016/j.compag.2019.105027
  28. Satoh, H., Iwashima, A., Endo, Y., Nakayama, H., Hasegawa, T., & Suzuki, E. (2009). Effect of Proactive Use of Inhaled Procaterol on Dyspnea in Daily Activities and Quality of Life in Patients with Chronic Obstructive Pulmonary Disease. Nihon Kokyuki Gakkai Zasshi, 47(9), 772780. (in Japanese).
  29. Sumikawa, A., Terui, Y., Sugano, A., Matsui, Y., Uemura, S., Satake, M., & Shioya, T. (2018). Validity of the Evaluation of Posture and Movement by a New Tri-axial Accelerometer: Judgement Criteria, Sensitivity and Specificity. Rigakuryoho Kagaku, 33(4), 561567. (in Japanese). 10.1589/rika.33.561
  30. Swets, J. A. (1988). Measuring the Accuracy of Diagnostic Systems. Science, 240(4857), 12851293. 10.1126/science.3287615
  31. Thuong, V. T., Tran, D.-N., Tran, D.-T., Thu, B. T., Tung, V. D., Phuong, N. T. A., Khanh, P. C. P., Tung, P. K., & Vi, M.-T. (2024). Effective Human Activity Recognition through Accelerometer Data. Engineering. Technology & Applied Science Research, 14(5), 1649916510. 10.48084/etasr.8211
  32. Trost, S. G., Zheng, Y., & Wong, W. K. (2014). Machine Learning for Activity Recognition: Hip Versus Wrist Data. Physiological Measurement, 35(11), 21832189. 10.1088/0967-3334/35/11/2183
  33. Ueda, K., Tamai, M., & Yasumoto, K. (2015). A Method for Recognizing Living Activities in Homes Using Positioning Sensor and Power Meters. In: I.E.E.E. International Conference on Pervasive Computing and Communication Workshops, PerCom Workshops, pp. 354359. 10.1109/PERCOMW.2015.7134062
  34. Vakacherla, S. S., Kantharaju, P., Mevada, M., & Kim, M. (2023). Single Accelerometer to Recognize Human Activities Using Neural Networks. Journal of Biomechanical Engineering, 145(6), 061005. 10.1115/1.4056767
  35. Weir, N. A., Brown, A. W., Shlobin, O. A., Smith, M. A., Reffett, T., Battle, E., Ahmad, S., & Nathan, S. D. (2013). The Influence of Alternative Instruction on 6-Min Walk Test Distance. Chest, 144(6), 19001905. 10.1378/chest.13-0287
  36. Wieland, F., & Nigg, C. (2023). A Trainable Open-Source Machine Learning Accelerometer Activity Recognition Toolbox: Deep Learning Approach. JMIR AI, 2, e42337. 10.2196/42337
  37. Yamane, T., Kimura, M., & Morita, M. (2024). Application of Nine-Axis Accelerometer-Based Recognition of Daily Activities in Clinical Examination. Physical Activity and Health, 8(1), 2946. 10.5334/paah.313
  38. Yousaf, R., Arif, M., Ullah, Q., Rafiq, S., Hanif, A., & Ali, M. (2019). Daily Activity Related Quality of Life in Chronic Obstructive Pulmonary Disease in Adults. Int J Front Sci, 3(1), 1023. 10.5281/zenodo.2544128
DOI: https://doi.org/10.5334/paah.441 | Journal eISSN: 2515-2270
Language: English
Submitted on: Feb 12, 2025
|
Accepted on: Apr 21, 2025
|
Published on: May 9, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Takahiro Yamane, Moeka Kimura, Mizuki Morita, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.