References
- Agustí, A., Celli, B. R., Criner, G. J., Halpin, D., Anzueto, A., Barnes, P., Bourbeau, J., Han, M. K., Martinez, F. J., Montes de Oca, M., Mortimer, K., Papi, A., Pavord, I., Roche, N., Salvi, S., Sin, D. D., Singh, D., Stockley, R., López Varela, M. V., Wedzicha, J. A., & Vogelmeier, C. F. (2023). Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. European Respiratory Journal, 61(4). 10.1183/13993003.00239-2023
- Ankita, S., Rani, S., Babbar, H., Coleman, S., Singh, A., & Aljahdali, H. M. (2021). An efficient and lightweight deep learning model for human activity recognition using smartphones. Sensors, 21,
3845 . 10.3390/s21113845 - Bozkurt, F. (2022). A Comparative Study on Classifying Human Activities Using Classical Machine and Deep Learning Methods. Arabian Journal of Science and Engineering, 47(2), 1507–1521. 10.1007/s13369-021-06008-5
- Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. 10.1023/A:1010933404324
- Bull, K., He, Y. H., Jejjala, V., & Mishra, C. (2018). Machine Learning CICY Threefolds. Physics Letters B, 785, 65–72. 10.1016/j.physletb.2018.08.008
- Carrington, A. M., Manuel, D. G., Fieguth, P. W., Ramsay, T., Osmani, V., Wernly, B., Bennett, C., Hawken, S., Magwood, O., Sheikh, Y., McInnes, M., & Holzinger, A. (2023). Deep ROC Analysis and AUC as Balanced Average Accuracy, for Improved Classifier Selection, Audit and Explanation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1), 329–341. 10.1109/TPAMI.2022.3145392
- Chung, E. K. (2013). Ambulatory Electrocardiography: Holter Monitor Electrocardiography. Springer: Science+Business Media, p. 7.
- Eakin, E. G., Resnikoff, P. M., Prewitt, L. M., Ries, A. L., & Kaplan, R. M. (1998). Validation of A New Dyspnea Measure. the UCSD Shortness of Breath Questionnaire. Chest, 113(3), 619–624. 10.1378/chest.113.3.619
- Fischer, J. E., Bachmann, L. M., & Jaeschke, R. (2003). A Readers’ Guide to the Interpretation of Diagnostic Test Properties: Clinical Example of Sepsis. Intensive Care Medicine, 29(7), 1043–1051. 10.1007/s00134-003-1761-8
- Garlant, J. A., Ammann, K. R., & Slepian, M. J. (2018). Stretchable Electronic Wearable Motion Sensors Delineate Signatures of Human Motion Tasks. ASAIO Journal, 64(3), 351–359. 10.1097/MAT.0000000000000784
- Gholamiangonabadi, D., Kiselov, N., & Grolinger, K. (2020). Deep Neural Networks for Human Activity Recognition with Wearable Sensors: Leave-One-Subject-Out Cross-Validation for Model Selection. IEEE Access, 8, 133982–133994. 10.1109/ACCESS.2020.3010715
- Hendry, D., Chai, K., Campbell, A., Hopper, L., O’Sullivan, P., & Straker, L. (2020). Development of a Human Activity Recognition System for Ballet Tasks. Sports Med – Open, 6(10). 10.1186/s40798-020-0237-5
- Holland, A. E., Spruit, M. A., Troosters, T., Puhan, M. A., Pepin, V., Saey, D., McCormack, M. C., Carlin, B. W., Sciurba, F. C., Pitta, F., Wanger, J., MacIntyre, N., Kaminsky, D. A., Culver, B. H., Revill, S. M., Hernandes, N. A., Andrianopoulos, V., Camillo, C. A., Mitchell, K. E., Lee, A. L., Hill, C. J., & Singh, S. J. (2014). An Official European Respiratory Society/American Thoracic Society Technical Standard: Field Walking Tests in Chronic Respiratory Disease. European Respiratory Journal, 44(6), 1428–1446. 10.1183/09031936.00150314
- Huang, E. J., Yan, K., & Onnela, J. P. (2022). Smartphone-Based Activity Recognition Using Multistream Movelets Combining Accelerometer and Gyroscope Data. Sensors, 22(7). 10.3390/s22072618
- Jerri, A. J. (1977). The Shannon sampling theorem—Its various extensions and applications: A tutorial review. Proceedings of the IEEE, 65(11), 1565–1596. 10.1109/PROC.1977.10771
- Kavuncuoğlu, E., Özdemir, A. T., & Uzunhisarcıklı, E. (2024). Investigating the Impact of Sensor Axis Combinations on Activity Recognition and Fall Detection: An Empirical Study. Multimedia Tools and Applications. 10.1007/s11042-024-20136-8
- Kim, N. Y., Han, J., Hwang, Y. I., Park, Y. B., Park, S. J., Park, J., Jung, K. S., Yoo, K. H., Lee, J. H., & Lee, C. Y. (2024). Components of the Chronic Obstructive Pulmonary Disease Assessment Test Associated with the Exacerbation of Severe Chronic Obstructive Pulmonary Disease Patients. Respiration, 103(6), 326–335. 10.1159/000538330
- Leotta, M., Fasciglione, A., & Verri, A. (2021). Daily Living Activity Recognition Using Wearable Devices: A Features-Rich Dataset and a Novel Approach. Pattern Recognition. ICPR International Workshops and Challenges,
12662 . 10.1007/978-3-030-68790-8_15 - Liu, S., Gao, R. X., & Freedson, P. S. (2012). Computational Methods for Estimating Energy Expenditure in Human Physical Activities. Medicine & Science in Sports & Exercise, 44(11), 2138–2146. 10.1249/MSS.0b013e31825e825a
- Lowe, S. A., & Ólaighin, G. (2014). Monitoring human health behaviour in one’s living environment: a technological review. Medical Engineering and Physics, 36(2), 147–68. 10.1016/j.medengphy.2013.11.010
- Luckhurst, J., Hughes, C., & Shelley, B. (2024). Classifying physical activity levels using Mean Amplitude Deviation in adults using a chest worn accelerometer: validation of the Vivalink ECG Patch. BMC Sports Science, Medicine and Rehabilitation, 16, 212. 10.1186/s13102-024-00991-6
- Matsuyama, H., Hiroi, K., Kaji, K., Yonezawa, T., & Kawaguchi, N. (2019). Ballroom dance step type recognition by random forest using video and wearable sensor. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, pp. 774–780. 10.1145/3341162.3344852
- Niazi, A. H., Yazdansepas, D., Gay, J. L., Maier, F. W., Ramaswamy, L., Rasheed, K., & Buman, M. (2017). Statistical analysis of window sizes and sampling rates in human activity recognition. In: In: Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017) – HEALTHINF, pp. 319–325. 10.5220/0006148503190325
- O’Brien, C., & Min, C. H. (2022). Classification of Various Workout Motions Using Wearable Sensors. In: 2022 IEEE World AI IoT Congress (AIIoT), pp. 442–446. 10.1109/AIIoT54504.2022.9817337
- Panahandeh, G., Mohammadiha, N., Leijon, A., & Händel, P. (2012). Chest-mounted inertial measurement unit for pedestrian motion classification using continuous hidden Markov model. In: Proceedings of 2012 IEEE International Instrumentation and Measurement Technology Conference, pp. 991–995. 10.1109/I2MTC.2012.6229380
- Ren, Y., Liu, M., Yang, Y., Mao, L., & Chen, K. (2024). Clinical Human Activity Recognition Based on a Wearable Patch of Combined Tri-axial ACC and ECG Sensors. Digital Health, 10, 20552076231223804. 10.1177/20552076231223804
- Sakai, K., Oishi, K., Miwa, M., Kumagai, H., & Hirooka, H. (2019). Behavior classification of goats using 9-axis multi sensors: The effect of imbalanced datasets on classification performance. Computers and Electronics in Agriculture, 166,
105027 . 10.1016/j.compag.2019.105027 - Satoh, H., Iwashima, A., Endo, Y., Nakayama, H., Hasegawa, T., & Suzuki, E. (2009). Effect of Proactive Use of Inhaled Procaterol on Dyspnea in Daily Activities and Quality of Life in Patients with Chronic Obstructive Pulmonary Disease. Nihon Kokyuki Gakkai Zasshi, 47(9), 772–780. (in Japanese).
- Sumikawa, A., Terui, Y., Sugano, A., Matsui, Y., Uemura, S., Satake, M., & Shioya, T. (2018). Validity of the Evaluation of Posture and Movement by a New Tri-axial Accelerometer: Judgement Criteria, Sensitivity and Specificity. Rigakuryoho Kagaku, 33(4), 561–567. (in Japanese). 10.1589/rika.33.561
- Swets, J. A. (1988). Measuring the Accuracy of Diagnostic Systems. Science, 240(4857), 1285–1293. 10.1126/science.3287615
- Thuong, V. T., Tran, D.-N., Tran, D.-T., Thu, B. T., Tung, V. D., Phuong, N. T. A., Khanh, P. C. P., Tung, P. K., & Vi, M.-T. (2024). Effective Human Activity Recognition through Accelerometer Data. Engineering. Technology & Applied Science Research, 14(5), 16499–16510. 10.48084/etasr.8211
- Trost, S. G., Zheng, Y., & Wong, W. K. (2014). Machine Learning for Activity Recognition: Hip Versus Wrist Data. Physiological Measurement, 35(11), 2183–2189. 10.1088/0967-3334/35/11/2183
- Ueda, K., Tamai, M., & Yasumoto, K. (2015). A Method for Recognizing Living Activities in Homes Using Positioning Sensor and Power Meters. In: I.E.E.E. International Conference on Pervasive Computing and Communication Workshops, PerCom Workshops, pp. 354–359. 10.1109/PERCOMW.2015.7134062
- Vakacherla, S. S., Kantharaju, P., Mevada, M., & Kim, M. (2023). Single Accelerometer to Recognize Human Activities Using Neural Networks. Journal of Biomechanical Engineering, 145(6),
061005 . 10.1115/1.4056767 - Weir, N. A., Brown, A. W., Shlobin, O. A., Smith, M. A., Reffett, T., Battle, E., Ahmad, S., & Nathan, S. D. (2013). The Influence of Alternative Instruction on 6-Min Walk Test Distance. Chest, 144(6), 1900–1905. 10.1378/chest.13-0287
- Wieland, F., & Nigg, C. (2023). A Trainable Open-Source Machine Learning Accelerometer Activity Recognition Toolbox: Deep Learning Approach. JMIR AI, 2,
e42337 . 10.2196/42337 - Yamane, T., Kimura, M., & Morita, M. (2024). Application of Nine-Axis Accelerometer-Based Recognition of Daily Activities in Clinical Examination. Physical Activity and Health, 8(1), 29–46. 10.5334/paah.313
- Yousaf, R., Arif, M., Ullah, Q., Rafiq, S., Hanif, A., & Ali, M. (2019). Daily Activity Related Quality of Life in Chronic Obstructive Pulmonary Disease in Adults. Int J Front Sci, 3(1), 10–23. 10.5281/zenodo.2544128
