References
- Ankita, Rani, S., Babbar, H., Coleman, S., Singh, A., & Aljahdali, H. M. (2021). An efficient and lightweight deep learning model for human activity recognition using smartphones. Sensors, 21, 3845. DOI: 10.3390/s21113845
- Breiman, L. (2001). Random Forests. Mach Learn, 45, 5–32. DOI: 10.1023/A:1010933404324
- Bull, K., He, Y. H., Jejjala, V., & Mishra, C. (2018). Machine learning CICY threefolds. Phys Lett B, 785, 65–72. DOI: 10.1016/j.physletb.2018.08.008
- Donges, N. (2023). Random Forest: A Complete Guide for Machine Learning. Available at
https://builtin.com/data-science/random-forest-algorithm [Last accessed 15 January 2024]. - Eakin, E. G., Resnikoff, P. M., Prewitt, L. M., Ries, A. L., & Kaplan, R. M. (1998). Validation of a new dyspnea measure: The ucsd shortness of breath questionnaire. Respir Care, 43(7), 529–532. DOI: 10.1378/chest.113.3.619
- Esterman, M., Tamber-Rosenau, B. J., Chiu, Y. C., & Yantis, S. (2010). Avoiding non independence in fMRI data analysis: Leave one subject out. NeuroImage, 50(2), 572–576. DOI: 10.1016/j.neuroimage.2009.10.092
- Holland, A. E., Spruit, M. A., Troosters, T., Puhan, M. A., Pepin, V., Saey, D., McCormack, M. C., Carlin, B. W., Sciurba, F. C., Pitta, F., Wanger, J., MacIntyre, N., Kaminsky, D. A., Culver, B. H., Revill, S. M., Hernandes, N. A., Andrianopoulos, V., Camillo, C. A., Mitchell, K. E., Lee, A. L., Hill, C. J., & Singh, S. J. (2014). An official European respiratory society/American thoracic society technical standard: Field walking tests in chronic respiratory disease. Eur Respir J, 44(6), 1428–46. DOI: 10.1183/09031936.00150314
- Kaneko, I., Yoshida, Y., & Yuda, E. (2019). Improvements of the Analysis of Human Activity Using Acceleration Record of Electrocardiographs. SIPIJ, 39–48. DOI: 10.5121/sipij.2019.10504
- Kawagoshi, A., Kiyokawa, N., Sugawara, K., Takahashi, H., Abe, R., Kitamura, N., Satake, M., & Shioya, T. (2011). The quantitative assessment of the physical activity of daily life in patients with stable elderly COPD using an activity monitoring and evaluation system. The Journal of Japanese Physical Therapy Association, 38(7), 497–504. (only abstract in English). DOI: 10.15063/rigaku.KJ00007731337
- Kennedy, H. L. (2006). The history, science, and innovation of Holter technology. ANE, 11(1), 85–94. DOI: 10.1111/j.1542-474X.2006.00067.x
- Leotta, M., Fasciglione, A., & Verri, A. (2021).
Daily living activity recognition using wearable devices: A features-rich dataset and a novel approach. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021 . Lecture Notes in Computer Science, 12662. Cham: Springer. 171–187. DOI: 10.1007/978-3-030-68790-8_15 - Liu, S., Gao, R., & Freedson, P. (2012). Computational methods for estimating energy expenditure in human physical activities. Med Sci Sports Exerc, 44(11), 2138–2146. DOI: 10.1249/mss.0b013e31825e825a
- Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., et al. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 2095–2128. DOI: 10.1016/S0140-6736(12)61728-0
- Miao, F., Cheng, Y., He, Y., He, Q., & Li, Y. (2015). A wearable context-aware ECG monitoring system integrated with built-in kinematic sensors of the smartphone. Sensors, 15(5), 11465–11484. DOI: 10.3390/s150511465
- Nguyen, H. Q., Chu, L., Liu, I. L. A., Lee, J. S., Suh, D., Korotzer, B., Yuen, G., Desai, S., Coleman, K. J., Xiang, A. H., & Gould, M. K. (2014). Associations between physical activity and 30-day readmission risk in chronic obstructive pulmonary disease. Ann Am Thorac Soc, 11(5), 695–705. DOI: 10.1513/AnnalsATS.201401-017OC
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. J Mach Learn Res, 12, 2825–2830. DOI: 10.48550/arXiv.1201.0490
- Rafl, J., Bachman, T. E., Rafl-Huttova, V., Walzel, S., & Rozanek, M. (2022). Commercial smartwatch with pulse oximeter detects short-time hypoxemia as well as standard medical-grade device: Validation study. Digital Health, 8. DOI: 10.1177/20552076221132127
- Ravi, N., Dandekar, N., Mysore, P., & Littman, M. L. (2005). Activity recognition from accelerometer data. Proceedings of the National Conference on Artificial Intelligence, 3, 1541–1546.
- Satoh, H., Iwashima, A., Endo, Y., Nakayama, H., Hasegawa, T., & Suzuki, E. (2009). Effect of proactive use of inhaled procaterol on dyspnea in daily activities and quality of life in patients with chronic obstrsatohuctive pulmonary disease. AJRS, 47(9), 772–780. (only abstract in English).
- Sumikawa, A., Terui, Y., Sugano, A., Matsui, Y., Uemura, S., Satake, M., & Shioya, T. (2018). Validity of the evaluation of posture and movement by a new tri-axial accelerometer: judgement criteria, sensitivity and specificity. Rigakuryoho Kagaku, 33(4), 561–567. (only abstract in English). DOI: 10.1589/rika.33.561
- Trost, S. G., Zheng, Y., & Wong, W. K. (2014). Machine learning for activity recognition: Hip versus wrist data. Physiol Meas, 35(11), 2183–2189. DOI: 10.1088/0967-3334/35/11/2183
- UNM Hospitals. How to Use a Holter Monitor. Available at
https://hsc.unm.edu/health/patient-care/heart-vascular/doc/holter-monitor-english.pdf [Last accessed 02 November 2023]. - Waschki, B., Kirsten, A., Holz, O., Müller, K. C., Meyer, T., Watz, H., & Magnussen, H. (2011). Physical activity is the strongest predictor of all-cause mortality in patients with COPD. Chest, 140(2), 331–342. DOI: 10.1378/chest.10-2521
- Weir, N. A., Brown, A. W., Shlobin, O. A., Smith, M. A., Reffett, T., Battle, E., Ahmad, S., & Nathan, S. D. (2013). The influence of alternative instruction on 6-min walk test distance. Chest, 144(6), 1900–1905. DOI: 10.1378/chest.13-0287
- Yamane, T., Yamasaki, Y., Nakashima, W., & Morita, M. (2023). Tri-Axial Accelerometer-Based Recognition of Daily Activities Causing Shortness of Breath in COPD Patients. Physical Activity and Health, 7(1), 64–75. DOI: 10.5334/paah.224
