References
- Baños, O., Damas, M., Pomares, H., & Rojas, I. (2013).
Activity recognition based on a multi-sensor meta-classifier . Advances in Computational Intelligence (pp. 208–215). Berlin, Heidelberg: Springer. DOI: 10.1007/978-3-642-38682-4_24 - Bao, L., & Intille, S. S. (2004). Activity recognition from user-annotated acceleration data. Lecture Notes in Computer Science, 3001, 1–17. DOI: 10.1007/978-3-540-24646-6_1
- Breiman, L. (2001). Random Forests. Mach Learn, 45, 5–32. DOI: 10.1023/A:1010933404324
- Bull, K., He, Y. H., Jejjala, V., & Mishra, C. (2018). Machine learning CICY threefolds. Phys Lett B, 785, 65–72. DOI: 10.1016/j.physletb.2018.08.008
- Eakin, E. G., Resnikoff, P. M., Prewitt, L. M., Ries, A. L., & Kaplan, R. M. (1998). Validation of a new dyspnea measure: The ucsd shortness of breath questionnaire. Respir Care, 43(7), 529–532. DOI: 10.1378/chest.113.3.619
- Esteban, C., Quintana, J. M., Aburto, M., Moraza, J., Egurrola, M., Pérez-Izquierdo, J., Aizpiri, S., Aguirre, U., & Capelastegui, A. (2010). Impact of changes in physical activity on health-related quality of life among patients with COPD. Eur Respir J, 36, 292–300. DOI: 10.1183/09031936.00021409
- Fischer, J. E., Bachmann, L. M., & Jaeschke, R. (2003). A readers’ guide to the interpretation of diagnostic test properties: Clinical example of sepsis. Intensive Care Med, 29(7), 1043–1051. DOI: 10.1007/s00134-003-1761-8
- Hibbing, P. R., Lamunion, S. R., Kaplan, A. S., & Crouter, S. E. (2018). Estimating energy expenditure with ActiGraph GT9X Inertial Measurement Unit. Med Sci Sports Exerc, 50(5), 1093–1102. DOI: 10.1249/MSS.0000000000001532
- Holland, A. E., Spruit, M. A., Troosters, T., Puhan, M. A., Pepin, V., Saey, D., McCormack, M. C., Carlin, B. W., Sciurba, F. C., Pitta, F., Wanger, J., MacIntyre, N., Kaminsky, D. A., Culver, B. H., Revill, S. M., Hernandes, N. A., Andrianopoulos, V., Camillo, C. A., Mitchell, K. E., Lee, A. L., Hill, C. J., & Singh, S. J. (2014). An official European respiratory society/American thoracic society technical standard: Field walking tests in chronic respiratory disease. Eur Respir J, 44(6), 1428–46. DOI: 10.1183/09031936.00150314
- IBM Cloud Education. (2020). Random Forest. Available at
https://www.ibm.com/cloud/learn/random-forest [Last accessed 09 December 2022]. - Kawagoshi, A., Kiyokawa, N., Sugawara, K., Takahashi, H., Abe, R., Kitamura, N., Satake, M., & Shioya, T. (2011). The quantitative assessment of the physical activity of daily life in patients with stable elderly COPD using an activity monitoring and evaluation system. The Journal of Japanese Physical Therapy Association, 38(7), 497–504. (only abstract in English). DOI: 10.15063/rigaku.KJ00007731337
- Khan, M. U. S., Abbas, A., Ali, M., Jawad, M., Khan, S. U., Li, K., & Zomaya, A. Y. (2018). On the Correlation of Sensor Location and Human Activity Recognition in Body Area Networks (BANs). IEEE Systems Journal, 12(1), 82–91. DOI: 10.1109/JSYST.2016.2610188
- Liu, S., Gao, R., & Freedson, P. (2012). Computational methods for estimating energy expenditure in human physical activities. Med Sci Sports Exerc, 44(11), 2138–2146. DOI: 10.1249/MSS.0b013e31825e825a
- Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., et al. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 2095–2128. DOI: 10.1016/S0140-6736(12)61728-0
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. J Mach Learn Res, 12, 2825–2830. DOI: 10.48550/arXiv.1201.0490
- Satoh, H., Iwashima, A., Endo, Y., Nakayama, H., Hasegawa, T., & Suzuki, E. (2009). Effect of proactive use of inhaled procaterol on dyspnea in daily activities and quality of life in patients with chronic obstructive pulmonary disease. AJRS, 47(9), 772–780. (only abstract in English).
- Scikit.ensemble.RandomForestClassifier. Available at
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html [Last accessed 28 November 2022]. - Shephard, R. J. (2003). Limits to the measurement of habitual physical activity by questionnaires. Br J Sports Med, 37, 197–206. DOI: 10.1136/bjsm.37.3.197
- Sumikawa, A., Terui, Y., Sugano, A., Matsui, Y., Uemura, S., Satake, M., & Shioya, T. (2018). Validity of the evaluation of posture and movement by a new tri-axial accelerometer: judgement criteria, sensitivity and specificity. Rigakuryoho Kagaku, 33(4), 561–567. (only abstract in English). DOI: 10.1589/rika.33.561
- Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–1293. DOI: 10.1126/science.3287615
- Trost, S. G., Zheng, Y., & Wong, W. K. (2014). Machine learning for activity recognition: Hip versus wrist data. Physiol Meas, 35(11), 2183–2189. DOI: 10.1088/0967-3334/35/11/2183
- Ueda, K., Tamai, M., & Yasumoto, K. (2015). A Method for Recognizing Living Activities in Homes using Positioning Sensor and Power Meters. 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops). DOI: 10.1109/PERCOMW.2015.7134062
- Van Lummel, R. C., Ainsworth, E., Lindemann, U., Zijlstra, W., Chiari, L., Van Campen, P., & Hausdorff, J. M. (2013). Automated approach for quantifying the repeated sit-to-stand using one body fixed sensor in young and older adults. Gait Posture, 38(1), 153–156. DOI: 10.1016/j.gaitpost.2012.10.008
- Vos, T., Flaxman, A. D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M., et al. (2012). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 2163–2196. DOI: 10.1016/S0140-6736(12)61729-2
- Waschki, B., Kirsten, A., Holz, O., Müller, K. C., Meyer, T., Watz, H., & Magnussen, H. (2011). Physical activity is the strongest predictor of all-cause mortality in patients with COPD. Chest, 140(2), 331–342. DOI: 10.1378/chest.10-2521
- Weir, N. A., Brown, A. W., Shlobin, O. A., Smith, M. A., Reffett, T., Battle, E., Ahmad, S., & Nathan, S. D. (2013). The influence of alternative instruction on 6-min walk test distance. Chest, 144(6), 1900–1905. DOI: 10.1378/chest.13-0287
- Zhang, Y., Markovic, S., Sapir, I., Wagenaar, R. C., & Little, T. D. C. (2011). Continuous functional activity monitoring based on wearable tri-axial accelerometer and gyroscope. 2011 5th Int Conf Pervasive Comput Technol Healthc Work PervasiveHealth (pp. 370–373). DOI: 10.4108/icst.pervasivehealth.2011.245966
