Have a personal or library account? Click to login
Tri-Axial Accelerometer-Based Recognition of Daily Activities Causing Shortness of Breath in COPD Patients Cover

Tri-Axial Accelerometer-Based Recognition of Daily Activities Causing Shortness of Breath in COPD Patients

Open Access
|Feb 2023

References

  1. Baños, O., Damas, M., Pomares, H., & Rojas, I. (2013). Activity recognition based on a multi-sensor meta-classifier. Advances in Computational Intelligence (pp. 208215). Berlin, Heidelberg: Springer. DOI: 10.1007/978-3-642-38682-4_24
  2. Bao, L., & Intille, S. S. (2004). Activity recognition from user-annotated acceleration data. Lecture Notes in Computer Science, 3001, 117. DOI: 10.1007/978-3-540-24646-6_1
  3. Breiman, L. (2001). Random Forests. Mach Learn, 45, 532. DOI: 10.1023/A:1010933404324
  4. Bull, K., He, Y. H., Jejjala, V., & Mishra, C. (2018). Machine learning CICY threefolds. Phys Lett B, 785, 6572. DOI: 10.1016/j.physletb.2018.08.008
  5. Eakin, E. G., Resnikoff, P. M., Prewitt, L. M., Ries, A. L., & Kaplan, R. M. (1998). Validation of a new dyspnea measure: The ucsd shortness of breath questionnaire. Respir Care, 43(7), 529532. DOI: 10.1378/chest.113.3.619
  6. Esteban, C., Quintana, J. M., Aburto, M., Moraza, J., Egurrola, M., Pérez-Izquierdo, J., Aizpiri, S., Aguirre, U., & Capelastegui, A. (2010). Impact of changes in physical activity on health-related quality of life among patients with COPD. Eur Respir J, 36, 292300. DOI: 10.1183/09031936.00021409
  7. Fischer, J. E., Bachmann, L. M., & Jaeschke, R. (2003). A readers’ guide to the interpretation of diagnostic test properties: Clinical example of sepsis. Intensive Care Med, 29(7), 10431051. DOI: 10.1007/s00134-003-1761-8
  8. Hibbing, P. R., Lamunion, S. R., Kaplan, A. S., & Crouter, S. E. (2018). Estimating energy expenditure with ActiGraph GT9X Inertial Measurement Unit. Med Sci Sports Exerc, 50(5), 10931102. DOI: 10.1249/MSS.0000000000001532
  9. Holland, A. E., Spruit, M. A., Troosters, T., Puhan, M. A., Pepin, V., Saey, D., McCormack, M. C., Carlin, B. W., Sciurba, F. C., Pitta, F., Wanger, J., MacIntyre, N., Kaminsky, D. A., Culver, B. H., Revill, S. M., Hernandes, N. A., Andrianopoulos, V., Camillo, C. A., Mitchell, K. E., Lee, A. L., Hill, C. J., & Singh, S. J. (2014). An official European respiratory society/American thoracic society technical standard: Field walking tests in chronic respiratory disease. Eur Respir J, 44(6), 142846. DOI: 10.1183/09031936.00150314
  10. IBM Cloud Education. (2020). Random Forest. Available at https://www.ibm.com/cloud/learn/random-forest [Last accessed 09 December 2022].
  11. Kawagoshi, A., Kiyokawa, N., Sugawara, K., Takahashi, H., Abe, R., Kitamura, N., Satake, M., & Shioya, T. (2011). The quantitative assessment of the physical activity of daily life in patients with stable elderly COPD using an activity monitoring and evaluation system. The Journal of Japanese Physical Therapy Association, 38(7), 497504. (only abstract in English). DOI: 10.15063/rigaku.KJ00007731337
  12. Khan, M. U. S., Abbas, A., Ali, M., Jawad, M., Khan, S. U., Li, K., & Zomaya, A. Y. (2018). On the Correlation of Sensor Location and Human Activity Recognition in Body Area Networks (BANs). IEEE Systems Journal, 12(1), 8291. DOI: 10.1109/JSYST.2016.2610188
  13. Liu, S., Gao, R., & Freedson, P. (2012). Computational methods for estimating energy expenditure in human physical activities. Med Sci Sports Exerc, 44(11), 21382146. DOI: 10.1249/MSS.0b013e31825e825a
  14. Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., et al. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 20952128. DOI: 10.1016/S0140-6736(12)61728-0
  15. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. J Mach Learn Res, 12, 28252830. DOI: 10.48550/arXiv.1201.0490
  16. Satoh, H., Iwashima, A., Endo, Y., Nakayama, H., Hasegawa, T., & Suzuki, E. (2009). Effect of proactive use of inhaled procaterol on dyspnea in daily activities and quality of life in patients with chronic obstructive pulmonary disease. AJRS, 47(9), 772780. (only abstract in English).
  17. Scikit.ensemble.RandomForestClassifier. Available at https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html [Last accessed 28 November 2022].
  18. Shephard, R. J. (2003). Limits to the measurement of habitual physical activity by questionnaires. Br J Sports Med, 37, 197206. DOI: 10.1136/bjsm.37.3.197
  19. Sumikawa, A., Terui, Y., Sugano, A., Matsui, Y., Uemura, S., Satake, M., & Shioya, T. (2018). Validity of the evaluation of posture and movement by a new tri-axial accelerometer: judgement criteria, sensitivity and specificity. Rigakuryoho Kagaku, 33(4), 561567. (only abstract in English). DOI: 10.1589/rika.33.561
  20. Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 12851293. DOI: 10.1126/science.3287615
  21. Trost, S. G., Zheng, Y., & Wong, W. K. (2014). Machine learning for activity recognition: Hip versus wrist data. Physiol Meas, 35(11), 21832189. DOI: 10.1088/0967-3334/35/11/2183
  22. Ueda, K., Tamai, M., & Yasumoto, K. (2015). A Method for Recognizing Living Activities in Homes using Positioning Sensor and Power Meters. 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops). DOI: 10.1109/PERCOMW.2015.7134062
  23. Van Lummel, R. C., Ainsworth, E., Lindemann, U., Zijlstra, W., Chiari, L., Van Campen, P., & Hausdorff, J. M. (2013). Automated approach for quantifying the repeated sit-to-stand using one body fixed sensor in young and older adults. Gait Posture, 38(1), 153156. DOI: 10.1016/j.gaitpost.2012.10.008
  24. Vos, T., Flaxman, A. D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M., et al. (2012). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 21632196. DOI: 10.1016/S0140-6736(12)61729-2
  25. Waschki, B., Kirsten, A., Holz, O., Müller, K. C., Meyer, T., Watz, H., & Magnussen, H. (2011). Physical activity is the strongest predictor of all-cause mortality in patients with COPD. Chest, 140(2), 331342. DOI: 10.1378/chest.10-2521
  26. Weir, N. A., Brown, A. W., Shlobin, O. A., Smith, M. A., Reffett, T., Battle, E., Ahmad, S., & Nathan, S. D. (2013). The influence of alternative instruction on 6-min walk test distance. Chest, 144(6), 19001905. DOI: 10.1378/chest.13-0287
  27. Zhang, Y., Markovic, S., Sapir, I., Wagenaar, R. C., & Little, T. D. C. (2011). Continuous functional activity monitoring based on wearable tri-axial accelerometer and gyroscope. 2011 5th Int Conf Pervasive Comput Technol Healthc Work PervasiveHealth (pp. 370373). DOI: 10.4108/icst.pervasivehealth.2011.245966
DOI: https://doi.org/10.5334/paah.224 | Journal eISSN: 2515-2270
Language: English
Submitted on: Oct 18, 2022
|
Accepted on: Dec 11, 2022
|
Published on: Feb 20, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Takahiro Yamane, Yuu Yamasaki, Wakana Nakashima, Mizuki Morita, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.