Have a personal or library account? Click to login
pylimer-tools: A Python Package for Generating and Analyzing Bead-Spring Polymer Networks Cover

pylimer-tools: A Python Package for Generating and Analyzing Bead-Spring Polymer Networks

Open Access
|Dec 2025

References

  1. 1Gusev AA. Numerical Estimates of the Topological Effects in the Elasticity of Gaussian Polymer Networks and Their Exact Theoretical Description. Macromolecules. May 2019;52(9):32443251. issn: 0024-9297, 1520-5835. DOI: 10.1021/acs.macromol.9b00262
  2. 2Gusev AA, Schwarz F. Molecular Dynamics Validation and Applications of the Maximum Entropy Homogenization Procedure for Predicting the Elastic Properties of Gaussian Polymer Networks. Macromolecules. Dec. 2019;52(24):94459455. issn: 0024-9297, 1520-5835. DOI: 10.1021/acs.macromol.9b01766
  3. 3Komarov PV, Yu-Tsung C, Shih-Ming C, Khalatur PG, Reineker P. Highly Cross-Linked Epoxy Resins: An Atomistic Molecular Dynamics Simulation Combined with a Mapping/Reverse Mapping Procedure. Macromolecules. Oct. 2007;40(22):81048113. issn: 0024-9297. DOI: 10.1021/ma070702
  4. 4Zhang G, Moreira LA, Stuehn T, Daoulas KC, Kremer K. Equilibration of High Molecular Weight Polymer Melts: A Hierarchical Strategy. ACS Macro Letters. Feb. 2014;3(2):198203. DOI: 10.1021/mz5000015
  5. 5Svaneborg C, Everaers R, Grest GS, Curro JG. Connectivity and Entanglement Stress Contributions in Strained Polymer Networks. Macromolecules. July 2008;41(13):49204928. issn: 0024-9297. DOI: 10.1021/ma800018f
  6. 6Gusev AA, Schwarz F. Molecular Dynamics Study on the Validity of Miller–Macosko Theory for Entanglement and Crosslink Contributions to the Elastic Modulus of End-Linked Polymer Networks. Macromolecules. Sept. 2022;55(18):83728383. issn: 0024-9297. DOI: 10.1021/acs.macromol.2c00814
  7. 7Gula IA, Karimi-Varzaneh HA, Svaneborg C. Computational Study of Cross-Link and Entanglement Contributions to the Elastic Properties of Model PDMS Networks. Macromolecules. Aug. 2020;53(16):69076927. issn: 0024-9297. DOI: 10.1021/acs.macromol.0c00682
  8. 8Grest GS, Kremer K. Molecular dynamics simulation for polymers in the presence of a heat bath. Physical Review A. May 1986;33(5):36283631. issn: 0556-2791. DOI: 10.1103/PhysRevA.33.3628
  9. 9Grest GS, Dünweg B, Kremer K. Vectorized link cell Fortran code for molecular dynamics simulations for a large number of particles. Computer Physics Communications. Oct. 1989;55(3):269285. issn: 00104655. DOI: 10.1016/0010-4655(89)90125-2
  10. 10Kremer K, Grest GS. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. The Journal of Chemical Physics. Apr. 1990;92(8):50575086. issn: 0021-9606, 1089-7690. DOI: 10.1063/1.458541
  11. 11Thompson AP, et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp Phys Comm. 2022;271:10817. DOI: 10.1016/j.cpc.2021.108171
  12. 12Abraham M, et al. GROMACS 2025.0 source code. Feb. 2025. URL: https://gitlab.com/gromacs/gromacs.
  13. 13COGNAC – OCTA.jp. URL: https://octa.jp/components/cognac/ (visited on 03/04/2025).
  14. 14OCTA – Integrated Simulation System for Soft Materials, Free and open software of Multi-Scale Simulation for Materials Design. URL: https://octa.jp/ (visited on 03/04/2025).
  15. 15Kühne TD, et al. CP2K: An electronic structure and molecular dynamics software package – Quickstep: Efficient and accurate electronic structure calculations. The Journal of Chemical Physics. May 2020;152(19):194103. issn: 0021-9606. DOI: 10.1063/5.0007045
  16. 16Van Rossum G, Drake FL. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace; 2009. isbn: 1-4414-1269-7.
  17. 17Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry. 2011;32(10):23192327. issn: 1096-987X. DOI: 10.1002/jcc.21787
  18. 18Gowers RJ, et al. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. scipy; June 2016. DOI: 10.25080/Majora-629e541a-00e
  19. 19Stefko M, Douglass K, Manley S. PolymerCpp. July 2020. DOI: 10.5281/zenodo.3928659
  20. 20Ramprasad-Group/PSP. original-date: 2020-05-17T03:11:56Z. Feb. 2025. URL: https://github.com/Ramprasad-Group/PSP (visited on 03/04/2025).
  21. 21Barrett T. Tj-Barrett/Polymer-Toolbox. original-date: 2022-07-28T16:11:09Z. Jan. 2024. URL: https://github.com/Tj-Barrett/Polymer-Toolbox (visited on 03/04/2025).
  22. 22Bernhard T. GenieTim/polymer-graph-sketcher. original-date: 2025-02-19T13:29:53Z. Oct. 2025. URL: https://github.com/GenieTim/polymer-graph-sketcher (visited on 10/30/2025).
  23. 23Intro — pybind11 documentation. URL: https://pybind11.readthedocs.io/en/stable/ (visited on 03/31/2022).
  24. 24Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal Complex Systems. 2006;1695. URL: https://igraph.org.
  25. 25Tsimouri IC, Caseri WR, Gusev AA. Monte Carlo Evidence on Simple Conventional Means to Characterize the Final Extent of Reaction of Cured End-Linked Polymer Networks through the Miller–Macosko Nonlinear Polymerization Theory. Macromolecules. Feb. 2021;54(4):15891598. issn: 0024-9297. DOI: 10.1021/acs.macromol.0c02251
  26. 26Tsimouri IC, Caseri W, Hine PJ, Gusev AA. Lightweight silicon and glass composites with submicron viscoelastic interlayers and unconventional combinations of stiffness and damping. Composites Part B: Engineering. Sept. 2024;284:111717. issn: 1359-8368. DOI: 10.1016/j.compositesb.2024.111717
  27. 27Mansuy R, Yor M, editors. Aspects of Brownian Motion. en. Universitext. Berlin Heidelberg: Springer; 2008. isbn: 978-3-540-22347-4. DOI: 10.1007/978-3-540-49966-4
  28. 28Ibe OC. Brownian Motion. In: Ibe OC, editor. Markov Processes for Stochastic Modeling (Second Edition). Oxford: Elsevier; Jan. 2013. pp. 263293. isbn: 978-0-12-407795-9. DOI: 10.1016/B978-0-12-407795-9.00009-8
  29. 29Chow WC. Brownian bridge. WIREs Computational Statistics. 2009;1(3):325332. issn: 1939-0068. DOI: 10.1002/wics.38
  30. 30Martínez S, Petritis D. Thermodynamics of a Brownian bridge polymer model in a random environment. Journal of Physics A: Mathematical and General. Mar. 1996;29(6):12671279. issn: 0305-4470, 1361-6447. DOI: 10.1088/0305-4470/29/6/013
  31. 31Wang S, Ramkrishna D, Narsimhan V. Exact sampling of polymer conformations using Brownian bridges. The Journal of Chemical Physics. July 2020;153(3):034901. issn: 0021-9606. DOI: 10.1063/5.0010368
  32. 32Bernhard T, Gusev AA. Phantom Force Balance Procedure for Predicting the Modulus of Entangled Polymer Networks. ACS Polymers Au. Aug. 2025;5(5):500513. DOI: 10.1021/acspolymersau.5c00036
  33. 33Langeloth M, Masubuchi Y, Böhm MC, Müller-Plathe F. Recovering the reptation dynamics of polymer melts in dissipative particle dynamics simulations via slip-springs. The Journal of Chemical Physics. Mar. 2013;138(10):104907. issn: 0021-9606. DOI: 10.1063/1.4794156
  34. 34Schneider L, de Pablo J. Entanglements via Slip-Springs with Soft, Coarse-Grained Models for Systems Having Explicit Liquid-Vapor Interfaces. arXiv:2211.05161 [cond-mat, physics:physics]. Nov. 2022. DOI: 10.48550/arXiv.2211.05161
  35. 35Gusev AA, Bernhard T. Molecular Model for Linear Viscoelastic Properties of Entangled Polymer Networks. Macromolecules. Nov. 2024;57(21):1015210163. issn: 0024-9297. DOI: 10.1021/acs.macromol.4c01429
  36. 36Anderson E, et al. LAPACK users’ guide. 3rd ed. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1999. isbn: 0-89871-447-8 (paperback).
  37. 37Johnson DB. Finding All the Elementary Circuits of a Directed Graph. SIAM Journal on Computing. Mar. 1975;4(1):7784. issn: 0097-5397, 1095-7111. DOI: 10.1137/0204007
  38. 38Pint: makes units easy — pint 0.23rc3.dev1+g52ac9f5 documentation. URL: https://pint.readthedocs.io/en/stable/index.html (visited on 02/06/2024).
  39. 39units command — LAMMPS documentation. URL: https://lammps.sandia.gov/doc/units.html (visited on 12/09/2020).
  40. 40Everaers R, Karimi-Varzaneh HA, Fleck F, Hojdis N, Svaneborg C. Kremer–Grest Models for Commodity Polymer Melts: Linking Theory, Experiment, and Simulation at the Kuhn Scale. Macromolecules. Mar. 2020;53(6):19011916. issn: 0024-9297. DOI: 10.1021/acs.macromol.9b02428
  41. 41Miller DR, Macosko CW. A New Derivation of Post Gel Properties of Network Polymers. Macromolecules. Mar. 1976;9(2):206211. issn: 0024-9297. DOI: 10.1021/ma60050a004
  42. 42Macosko CW, Miller DR. A New Derivation of Average Molecular Weights of Nonlinear Polymers. Macromolecules. Mar. 1976;9(2):199206. issn: 0024-9297. DOI: 10.1021/ma60050a003
  43. 43Urayama K, Miki T, Takigawa T, Kohjiya S. Damping Elastomer Based on Model Irregular Networks of End-Linked Poly(Dimethylsiloxane). Chemistry of Materials. Jan. 2004;16(1):173178. issn: 0897-4756. DOI: 10.1021/cm0343507
  44. 44Patel SK, Malone S, Cohen C, Gillmor JR, Colby RH. Elastic modulus and equilibrium swelling of poly(dimethylsiloxane) networks. Macromolecules. Sept. 1992;25(20):52415251. issn: 0024-9297, 1520-5835. DOI: 10.1021/ma00046a021
  45. 45McKinney W. Data Structures for Statistical Computing in Python. In: van der Walt S, Millman J, editors. Proceedings of the 9th Python in Science Conference; 2010. pp. 5661. DOI: 10.25080/Majora-92bf1922-00a
  46. 46The pandas development team. pandas-dev/pandas: Pandas. Feb. 2020. DOI: 10.5281/zenodo.3509134
  47. 47Harris CR, et al. Array programming with NumPy. Nature. Sept. 2020;585(7825):357362. DOI: 10.1038/s41586-020-2649-2
  48. 48Guennebaud G, Jacob B, et al. Eigen v3. 2010. URL: http://eigen.tuxfamily.org.
  49. 49Johnson SG. stevengj/nlopt. original-date: 2013-08-27T16:59:11Z. July 2022. URL: https://github.com/stevengj/nlopt (visited on 07/06/2022).
  50. 50Qiu Y. Spectra: C++ library for large scale eigenvalue problems; 2015. URL: https://spectralib.org.
  51. 51Ramírez J, Sukumaran SK, Vorselaars B, Likhtman AE. Efficient on the fly calculation of time correlation functions in computer simulations. The Journal of Chemical Physics. Oct. 2010;133(15):154103. issn: 0021-9606. DOI: 10.1063/1.3491098
  52. 52Rubinstein M, Colby RH. Polymer Physics. English. 1st edition. Oxford; New York: Oxford University Press, June 2003. isbn: 978-0-19-852059-7.
DOI: https://doi.org/10.5334/jors.609 | Journal eISSN: 2049-9647
Language: English
Submitted on: Jul 31, 2025
Accepted on: Dec 9, 2025
Published on: Dec 18, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Tim Bernhard, Fabian Schwarz, Andrei A. Gusev, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.