References
- Torchio M, Magni L, Gopaluni RB, Braatz RD, Raimondo DM. Lionsimba: a matlab framework based on a finite volume model suitable for li-ion battery design, simulation, and control. Journal of The Electrochemical Society. 2016;163(7):A1192. DOI: 10.1149/2.0291607jes
- Khalik Z, Donkers MCF, Bergveld HJ. Model simplifications and their impact on computational complexity for an electrochemistry-based battery modeling toolbox. Journal of Power Sources. 2021;488:229427. DOI: 10.1016/j.jpowsour.2020.229427
- Sulzer V, Marquis SG, Timms R, Robinson M, Chapman SJ. Python battery mathematical modelling (PyBaMM). Journal of Open Research Software. 2021;9(1). DOI: 10.5334/jors.309
- Planden B, Courtier NE, Robinson M, Khetarpal A, Brosa Planella F, Howey DA. PyBOP: A Python package for battery model optimisation and parameterisation (Version 25.11) [Computer software]. 2024. DOI: 10.48550/arXiv.2412.15859
- Clark S, Flores E, Hendrix L, Johansson A, Krishnamurthi S, Moll Nilsen H, Raynaud X, Watson F. BattMo: The Battery Modelling Toolbox (Version 0.3.0) [Computer software]. 2024. DOI: 10.5281/zenodo.10633682
- Reniers JM, Mulder G, Howey DA. Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries. Journal of The Electrochemical Society. 2019;166(14):A3189–A3200. DOI: 10.1149/2.0281914jes
- Barletta G, DiPrima P, Papurello D. Thévenin’s Battery Model Parameter Estimation Based on Simulink. Energies. 2022;15(17):6207. DOI: 10.3390/en15176207
- Sheikh AMA, Bergveld HJ, Donkers MCF. Investigating identification input designs for modelling lithium-ion batteries with hysteresis using LPV framework. In: 2024 American Control Conference (ACC). IEEE; 2024. p. 1952–1958. DOI: 10.23919/ACC60939.2024.10644893
- Sheikh AMA, Donkers MCF, Bergveld HJ. A comprehensive approach to sparse identification of linear parameter-varying models for lithium-ion batteries using improved experimental design. Journal of Energy Storage. 2024;95:112581. DOI: 10.1016/j.est.2024.112581
- Sheikh AMA, Donkers MCF, Bergveld HJ. Towards temperature-dependent linear parameter-varying models for lithium-ion batteries using novel experimental design. Journal of Energy Storage. 2025;119:116311. DOI: 10.1016/j.est.2025.116311
- den Boef P, Cox PB, Tóth R. LPVcore: MATLAB toolbox for LPV modelling, identification and control. IFAC-PapersOnLine. 2021;54(7):385–390. DOI: 10.1016/j.ifacol.2021.08.390
- Beintema G, Toth R, Schoukens M. Nonlinear state-space identification using deep encoder networks. In: Proceedings of the 3rd Conference on Learning for Dynamics and Control, in Proceedings of Machine Learning Researche. 2021;144:241–250. DOI: 10.48550/arXiv.2012.07697
- Hoekstra FS, Raijmakers LHJ, Donkers MCF, Bergveld HJ. Comparison of battery electromotive-force measurement and modelling approaches. Journal of Energy Storage. 2022;56:105910. DOI: 10.1016/j.est.2022.105910
- Thenaisie G, Brivio C. Hystimator: DRT-based hysteresis modelling for accurate SoC estimation in LFP battery cells. IET Renewable Power Generation. 2024;18:4387–4398. DOI: 10.1049/rpg2.13130
- Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology. 1996;58(1):267–288. DOI: 10.1111/j.2517-6161.1996.tb02080.x
- Andersen MS, Dahl J, Vandenberghe L. CVXOPT: A Python package for convex optimization. 2013. Available at:
http://cvxopt.org . - Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830. Available at:
http://jmlr.org/papers/v12/pedregosa11a.html
