References
- Antonini M, et al. Tiny-MLOps: a framework for orchestrating ML applications at the far edge of IoT systems. 2022 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS). Larnaca, Cyprus:
IEEE ;May 2022 . pp. 1–8.isbn : 9781665437066.url :https://ieeexplore.ieee.org/document/9787703/ (visited on 09/29/2024). - Gerrans J, Sherratt RS. Comparing XML and JSON Characteristics as Formats for Data Serialization Within Ultralow Power Embedded Systems. IEEE Embedded Systems Letters. Dec. 2024;16(4):489–492.
issn : 1943-0663, 1943-0671.url :https://ieeexplore.ieee.org/document/10654391/ (visited on 01/28/2025). - Lecun Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE. Nov. 1998;86(11):2278–2324.
issn : 00189219.url :http://ieeexplore.ieee.org/document/726791/ (visited on 12/18/2025). - Pitrou A. PEP 3154 – Pickle protocol version 4 — peps.python.org. en. Aug. 2011.
url :https://peps.python.org/pep-3154/ (visited on 02/07/2025). - Pitrou A. PEP 574 – Pickle protocol 5 with out-of-band data — peps.python.org. en. Mar. 2018.
url :https://peps.python.org/pep-0574/ (visited on 12/09/2024). - van Rossum G, Peters T. PEP 307 – Extensions to the pickle protocol — peps.python.org. en. Jan. 2003.
url :https://peps.python.org/pep-0307/ (visited on 02/07/2025).
