Have a personal or library account? Click to login
Crossflow: A Python Library for Computational Chemistry Workflows Cover

Crossflow: A Python Library for Computational Chemistry Workflows

Open Access
|Oct 2025

Figures & Tables

jors-13-539-g1.png
Figure 1

Pseudocode for the inverse docking workflow.

Table 1

Performance of Crossflow for the SWISH workflow [16], compared to the standard AMBER (multipmemd) reference implementation.

CODEPLATFORMWALLCLOCK TIME (S – MEAN OF DUPLICATE RUNS)SPEEDUP
multipmemd
64 CPU cores272
multipmemd
128 CPU cores145
pmemd.cuda + crossflow
1 GPU2291.00
pmemd.cuda + crossflow
2 GPUs1181.94
pmemd.cuda + crossflow
4 GPUs623.69
pmemd.cuda + crossflow
8 GPUs356.54
Table 2

Scaling performance of a Weighted Ensemble workflow. A “segment” is a short MD simulation of one member of the ensemble.

NUMBER OF WORKERSPERFORMANCEMEAN WALLCLOCK TIME PER SEGMENT (SECONDS)SPEEDUP
1280 segments in 1154.8 seconds4.121
2384 segments in 936.3 seconds2.441.7
4484 segments in 699.6 seconds1.452.8
8424 segments in 397.9 seconds0.944.4
16220 segments in 118.5 seconds0.547.6
jors-13-539-g2.png
Figure 2

Scores for ligand PRZ docked to 81 different protein targets (higher rank = better score). The score for the established binding partner (MUP, PDB code 1QY1) is indicated by the orange dot.

DOI: https://doi.org/10.5334/jors.539 | Journal eISSN: 2049-9647
Language: English
Submitted on: Oct 3, 2024
|
Accepted on: Sep 23, 2025
|
Published on: Oct 27, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Sam Cox, James Gebbie-Rayet, Charles Laughton, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.