Have a personal or library account? Click to login
Solar Performance Optimization Code for the Optical Response of Multilayer Stacks in Python: SolPOC Cover

Solar Performance Optimization Code for the Optical Response of Multilayer Stacks in Python: SolPOC

Open Access
|Dec 2025

References

  1. 1Atkinson C, Sansom CL, Almond HJ, Shaw CP. Coatings for concentrating solar systems – A review. Renewable and Sustainable Energy Reviews. 2015;45:113122. DOI: 10.1016/j.rser.2015.01.015
  2. 2Flamant G. Matériaux pour le solaire à concentration. In: Le Solaire à Concentration, ISTE; 2021.
  3. 3Soum-Glaude A, Bousquet I, Thomas L, Flamant G, Optical modeling of multilayered coatings based on SiC(N)H materials for their potential use as high-temperature solar selective absorbers. Solar Energy Materials and Solar Cells. 2013;117:315323. DOI: 10.1016/j.solmat.2013.06.030
  4. 4Grosjean A, Soum-Glaude A, Thomas L. Influence of operating conditions on the optical optimization of solar selective absorber coatings. Solar Energy Materials and Solar Cells. 2021;230:111280. DOI: 10.1016/j.solmat.2021.111280
  5. 5Di Giacomo L. PACVD/PVD de multicouches sélectives pour la conversion thermodynamique de l’énergie solaire; 2018. https://theses.hal.science/tel-03859282.
  6. 6Wankerl H, Stern ML, Mahdavi A, Eichler C, Lang EW. Parameterized reinforcement learning for optical system optimization. J Phys D Appl Phys. 2021;54:305104. DOI: 10.1088/1361-6463/abfddb
  7. 7Fisher K, Yu Z (Jason), Striling R, Holman Z. PVMirrors: Hybrid PV/CSP collectors that enable lower LCOEs. AIP Conf Proc. 2017;1850:020004. DOI: 10.1063/1.4984328
  8. 8Yu ZJ, Fisher KC, Holman ZC. Evaluation of spectrum-splitting dichroic mirrors for PV mirror tandem solar cells, In: 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015, Institute of Electrical and Electronics Engineers Inc.; 2015. DOI: 10.1109/PVSC.2015.7355761
  9. 9Wang G, Cheng XF, Hu P, Chen ZS, Liu Y, Jia L. Theoretical analysis of spectral selective transmission coatings for solar energy PV system. Int J Thermophys. 2013;34:23222333. DOI: 10.1007/s10765-011-1143-3
  10. 10Wang G, Yao Y, Lin J, Chen Z, Hu P. Design and thermodynamic analysis of a novel solar CPV and thermal combined system utilizing spectral beam splitter. Renew Energy. 2020;155:10911102. DOI: 10.1016/j.renene.2020.04.024
  11. 11Dobrowolski JA, Lowe D. Optical thin film synthesis program based on the use of Fourier transforms. Appl. Opt. 1978;17:30393050. DOI: 10.1364/AO.17.003039
  12. 12Tikhonravov A, Trubetskov M. Development of the needle optimization technique and new features of “OptiLayer” design software; 1994. http://spiedl.org/terms. DOI: 10.1117/12.192109
  13. 13Morf R, Kunz RE. Dielectric Filter Optimization By Simulated Thermal Annealing. In: Guenther KH, Pulker HK, editors. Thin Film Technologies III, SPIE; 1989. pp. 211219. DOI: 10.1117/12.950040
  14. 14Yang J-M, Kao C-Y. An evolutionary algorithm for the synthesis of multilayer coatings at oblique light incidence. Journal of Lightwave Technology. 2001;19:559570. DOI: 10.1109/50.920855
  15. 15Mak JCC, Sideris C, Jeong J, Hajimiri A, Poon JKS. Binary particle swarm optimized 2 × 2 power splitters in a standard foundry silicon photonic platform. Opt. Lett. 2016;41:38683871. DOI: 10.1364/OL.41.003868
  16. 16Langevin D, Bennet P, Khaireh-Walieh A, Wiecha P, Teytaud O, Moreau A. PyMoosh: a comprehensive numerical toolkit for computing the optical properties of multilayered structures; 2023. DOI: 10.1364/JOSAB.506175
  17. 17Luce A, Mahdavi A, Marquardt F, Wankerl H. TMM-Fast, a transfer matrix computation package for multilayer thin-film optimization: tutorial. Journal of the Optical Society of America A. 2022;39:1007. DOI: 10.1364/JOSAA.450928
  18. 18Larouche S, Martinu L. OpenFilters: open-source software for the design, optimization, and synthesis of optical filters. Appl Opt. 2008;47(13):C21930. DOI: 10.1364/AO.47.00C219
  19. 19Alonso-Álvarez D, Wilson T, Pearce P, Führer M, Farrell D, Ekins-Daukes N. Solcore: a multi-scale, Python-based library for modelling solar cells and semiconductor materials. J Comput Electron. 2018;17:10991123. DOI: 10.1007/s10825-018-1171-3
  20. 20Wolfgang Theiss, CODE/SCOUT; 2023. https://www.wtheiss.com/ (accessed September 13, 2023).
  21. 21Thin Film Center, Essential Macleod; 2023. https://www.thinfilmcenter.com/essential.php (accessed September 13, 2023).
  22. 22FTG Software Associates, FilmStar DESIGN; 2023. https://www.ftgsoftware.com/design.htm (accessed September 13, 2023).
  23. 23Stéphane Larouche, Ludvik Martinu, OpenFilters; 2008. https://openfilters.software.informer.com/1.1/ (accessed September 13, 2023).
  24. 24Com O. OptiLayer Thin Film Software; 2022.
  25. 25Defrance J, Lemaître C, Ajib R, Benedicto J, Mallet E, Pollès R, Plumey J-P, Mihailovic M, Centeno E, Ciracì C, Smith DR, Moreau A. Moosh: A Numerical Swiss Army Knife for the Optics of Multilayers in Octave/Matlab. J Open Res Softw. 2016;4:13. DOI: 10.5334/jors.100
  26. 26Moreau A, Bennet P, Langevin D, Wiecha P. PyMoosh; 2023. https://github.com/AnMoreau/PyMoosh (accessed September 12, 2023).
  27. 27Luce A. TMM Fast. 2023. https://github.com/MLResearchAtOSRAM/tmm_fast (accessed September 13, 2023).
  28. 28RP Photonics, RP-Coating V4; 2013. https://www.rp-photonics.com/rp_coating.html (accessed September 14, 2023).
  29. 29Grosjean A. SolPOC_Python_Package_v0.9.7_Materials_database; 2025. DOI: 10.5281/zenodo.17208300
  30. 30Bruggeman DAG. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys. 1935;416:636664. DOI: 10.1002/andp.19354160705
  31. 31Python Package Index – PyPI; 2023. https://pypi.org/ (accessed November 28, 2023).
  32. 32Polyanskiy MN. Refractive index database; 2023. https://refractiveindex.info (accessed September 11, 2023).
  33. 33Schott Optical Glass Datasheets; 2023. obtained from http://www.schott.com (accessed September 11, 2023).
  34. 34Soum-Glaude A, Bousquet I, Bichotte M, Quoizola S, Thomas L, Flamant G. Optical Characterization and Modeling of Coatings Intended as High Temperature Solar Selective Absorbers. Energy Procedia. 2014;49:530537. DOI: 10.1016/j.egypro.2014.03.057
  35. 35Fernández-García A, Sutter F, Montecchi M, Sallaberry (CENER) F, Heimsath (Fraunhofer ISE) A, Heras C, Le Baron E, Soum-Glaude A. Guidelines Parameters and Methode to Evaluate the Reflectance Properties OF Materials for Concentrating Solar Power Technology Under Laboratory Conditions, Official Reflectance Guideline Version 3.1 April 2020; 2020.
  36. 36Abelès F. La théorie générale des couches minces. Journal de Physique et Le Radium. 1950;11:307309. DOI: 10.1051/jphysrad:01950001107030700
  37. 37Grosjean A, Soum-Glaude A, Thomas L. Replacing silver by aluminum in solar mirrors by improving solar reflectance with dielectric top layers. Sustainable Materials and Technologies. 2021;29:e00307. DOI: 10.1016/j.susmat.2021.e00307
  38. 38Jelle BP. Solar radiation glazing factors for window panes, glass structures and electrochromic windows in buildings—Measurement and calculation. Solar Energy Materials and Solar Cells. 2013;116:291323. DOI: 10.1016/j.solmat.2013.04.032
  39. 39Myers DR, Emery K, Gueymard C. Proposed reference spectral irradiance standards to improve concentrating photovoltaic system design and performance evaluation. In: Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference; 2002. pp. 923926. DOI: 10.1109/PVSC.2002.1190731
  40. 40Gueymard CA. The SMARTS spectral irradiance model after 25 years: New developments and validation of reference spectra. Solar Energy. 2019;187:233253. DOI: 10.1016/j.solener.2019.05.048
  41. 41Grosjean A, Le Baron E. Longtime solar performance estimations of low-E glass depending on local atmospheric conditions. Solar Energy Materials and Solar Cells. 2022;240:111730. DOI: 10.1016/j.solmat.2022.111730
  42. 42Ayala S. Juan Russo, Py-SMARTS, (2020). https://github.com/NREL/pySMARTS (accessed September 19, 2023).
  43. 43Jelle BP, A Gustavsen TN, Nilsen T. Jacobsen, Solar material protection factor (SMPF) and solar skin protection factor (SSPF) for window panes and other glass structures in buildings. Solar Energy Materials and Solar Cells. 2007;91:342354. DOI: 10.1016/j.solmat.2006.10.017
  44. 44Winter S, Friedrich D. Effects of the New Standard IEC 60904-3:2008 on the Calibration Results of Common Solar Cell Types; 2009. DOI: 10.4229/24thEUPVSEC2009-4AV.3.67
  45. 45Kennedy J, Eberhart R. Particle Swarm Optimization. In: page 19421948. Proceedings of the IEEE International Conference on Neural Networks. editor; 1995. DOI: 10.1109/ICNN.1995.488968
  46. 46Storn R, Price K. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Journal of Global Optimization. 1997;11:341359. DOI: 10.1023/A:1008202821328
  47. 47Grosjean A, Soum-Glaude A, Neveu P, Thomas L. Comprehensive simulation and optimization of porous SiO2 antireflective coating to improve glass solar transmittance for solar energy applications. Solar Energy Materials and Solar Cells. 2018;182:166177. DOI: 10.1016/j.solmat.2018.03.040
  48. 48Barry MA, Berthier V, Wilts BD, Cambourieux MC, Bennet P, Pollès R, Teytaud O, Centeno E, Biais N, Moreau A. Evolutionary algorithms converge towards evolved biological photonic structures. Sci Rep. 2020;10. DOI: 10.1038/s41598-020-68719-3
  49. 49Bennet P. Optimisation numérique des structures photoniques; 2022. http://www.theses.fr/2022UCFAC052/document.
  50. 50Tikhonravov A, Trubetskov MK, DeBell GW. Optical coating design approaches based on the needle optimization technique. Appl. Opt. 2007;46:704710. DOI: 10.1364/AO.46.000704
  51. 51Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation; 1997. pp. 16782 DOI: 10.1109/4235.585893
  52. 52Bennet P, Langevin D, Essoual C, Khaireh-Walieh A, Teytaud O, Wiecha P, Moreau A. An illustrated tutorial on global optimization in nanophotonics; 2023. http://arxiv.org/abs/2309.09760. DOI: 10.1364/JOSAB.506389
  53. 53Rapin J, Bennet P, Centeno E, Haziza D, Moreau A, Teytaud O. Open Source Evolutionary Structured Optimization. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, Association for Computing Machinery. New York, NY, USA; 2020. pp. 15991607. DOI: 10.1145/3377929.3398091
  54. 54Bennet P, Doerr C, Moreau A, Rapin J, Teytaud F, Teytaud O. Nevergrad: black-box optimization platform. ACM SIGEVOlution. 2021;14:815. DOI: 10.1145/3460310.3460312
  55. 55Grosjean A. Etude, modélisation et optimisation de surfaces fonctionnelles pour les collecteurs solaires thermiques à concentration; 2018. http://www.theses.fr/2018PERP0002/document.
  56. 56Grosjean A. SolPOC v0.9.7 correct output of exemples; 2025. DOI: 10.5281/zenodo.17287049
  57. 57Ngoue D, Grosjean A, Di Giacomo L, Quoizola S, Soum-Glaude A, Thomas L, Lalau Y, Reoyo-Prats R, Claudet B, Faugeroux O, Leray C, Toutant A, Peroy J-Y, Ferrière A, Olalde G. 3 – Ceramics for concentrated solar power (CSP): From thermophysical properties to solar absorbers. In: Guillon O, editor. Advanced Ceramics for Energy Conversion and Storage, Elsevier; 2020. pp. 89127. DOI: 10.1016/B978-0-08-102726-4.00003-X
  58. 58Ngoue D. (Nano)composites en revêtement déposés par technologie plasma pour la conversion de l’énergie solaire; 2021. http://www.theses.fr/2021PERP0011/document.
  59. 59National Renewable Energy Laboratory. System Advisor Model Version 2022.11.29 (SAM 2022.11.21); (2022). https://https://sam.nrel.gov (accessed June 26, 2023).
  60. 60Grosjean A. SolPOC v0.9.7 correct output of exemples; 2025. DOI: 10.5281/zenodo.17340621
  61. 61Passarelli N. IDEA4Sun, CNRS; 2025. https://www.idea4sun.cnrs.fr/ (accessed October 14, 2025).
  62. 62Mahammou A, Grosjean A, Quoizola S, Plujat B, Thomas L, Soum-Glaude A. Design and plasma synthesis of spectrally selective mirror coatings for PV/CST compact hybridization. In: 30th Conference on Concentrating Solar Power and Chemical Energy Systems (SolarPACES 2024), Rome, Italy; 2024. https://hal.science/hal-04707987.
  63. 63Ruhwedel M, Sutter F, Heise S, Gehrke K, Lüpfert E, Grosjean A, Heller P, Pitz-Paal R. Integrated combination of concentrating solar thermal technologies and photovoltaics – the bifacial PV-Mirror. In: 30th Conference on Concentrating Solar Power and Chemical Energy Systems (SolarPACES 2024), Rome, Italy; 2024. https://elib.dlr.de/208004/ (accessed October 6, 2025).
  64. 64Grosjean A. Comparative Analysis of Spectral-Splitting Multilayer Coatings for Compact PV-CST Hybridization. In: 31th Conference on Concentrating Solar Power and Chemical Energy Systems (SolarPACES 2025), Zenodo; 2025. DOI: 10.5281/zenodo.17293043
DOI: https://doi.org/10.5334/jors.523 | Journal eISSN: 2049-9647
Language: English
Submitted on: Jun 24, 2024
Accepted on: Nov 14, 2025
Published on: Dec 12, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Antoine Grosjean, Pauline Bennet, Thalita Drumond, Amine Mahammou, Denis Langevin, Antoine Moreau, Audrey Soum-Glaude, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.