Have a personal or library account? Click to login
Adaguc-Server: Interactive Access to Heterogeneous Meteorological and Climatological Datasets Using Open Standards Cover

Adaguc-Server: Interactive Access to Heterogeneous Meteorological and Climatological Datasets Using Open Standards

Open Access
|Dec 2021

Figures & Tables

jors-9-382-g1.png
Figure 1

Application of Adaguc-server: Realtime WMS for NWCSAF in a Web application.

jors-9-382-g2.png
Figure 2

Example of using WMS extensions to display a timeseries graph.

jors-9-382-g3.png
Figure 3

Weather model runs: Relation between reference time and time.

jors-9-382-g4.png
Figure 4

Image from http://www.klimaatatlas.nl/ showing climate normals for monthly average temperature in July. This image is generated by a GetMap request. By using WMS extensions, it becomes possible to add a title, subtitle, scalebar, legend and north arrow in the map.

jors-9-382-g5.png
Figure 5

The GetHistogram request (on the right), similar to the GetMap request (on the left), provides statistics for the area in view using a web friendly format.

jors-9-382-g6.png
Figure 6

The same legend is used for all twelve months. Spatial difference in temperature for a month is low, temporal difference between maps is high.

jors-9-382-g7.png
Figure 7

One of the earlier OpenGeoWeb applications, displaying the KNMI Harmonie weather model with a vertical sounding (Progtemp/Bijvoet diagram).

jors-9-382-g8.png
Figure 8

Wildcards for GetFeatureInfo. When using DIM_MEMBER=* in the request, all other members will be returned in the response. Smart clients can then show the different members or ensembles in a single plot.

jors-9-382-g9.png
Figure 9

Overview of the Adaguc-server components.

jors-9-382-g10.png
Figure 10

Overview of the provided docker-compose file, which starts all needed Adaguc components with a single command.

jors-9-382-g11.png
Figure 11

Impression of how Nearest Neighbour interpolation is used to fill the image. On the left, the center of the grid cells, on the right the filled grid cells.

jors-9-382-g12.png
Figure 12

Comparison of nearest neighbour interpolation (left) versus bilinear interpolation (right).

jors-9-382-g13.png
Figure 13

Triangles in combination with barycentric interpolation for achieving bilinear interpolation.

jors-9-382-g14.png
Figure 14

Application of contour lines (left) and shading (right).

jors-9-382-g15.png
Figure 15

Visualisation of the Dutch elevation AHN dataset (Algemene Hoogtebestand Nederland) using hillshading. The left shows the raw hillshading layer, the middle shows standard rendering without hill shading and right shows rendering with hillshading.

jors-9-382-g16.png
Figure 16

Stippling used to indicate uncertainty.

jors-9-382-g17.png
Figure 17

Left: Displaying cloud cover using symbols (unit in octa), right: symbols indicating cloud to ground lightning.

jors-9-382-g18.png
Figure 18

Left: Wind barbs for the KNMI Harmonie weather model, right: wind vectors all flowing northwards with geographical perspective correction.

jors-9-382-g19.jpg
Figure 19

Natural view above Australia from the Himawari Satellite.

jors-9-382-g20.png
Figure 20

OpenGeoweb application showing real time precipitation data.

jors-9-382-g21.png
Figure 21

User Interface Platform of Primavera project (H2020), visualizations served via Adaguc-server. Web map application written with OpenLayers. https://uip.primavera-h2020.eu/data-viewer.

jors-9-382-g22.png
Figure 22

Climate change scenario viewer for the Spanish Climate Change Office – https://escenarios.adaptecca.es/.

jors-9-382-g23.png
Figure 23

Fire hazard viewer with stippling applied, from https://showcase.predictia.es/fwi.

jors-9-382-g24.png
Figure 24

NWCSAF using adaguc-viewer, data selection menu has been extended with many products. From http://nwcsaf-adaguc-proofs.aemet.es/adaguc-viewer/.

jors-9-382-g25.png
Figure 25

NWCSAF displaying one of the live data streams in the adaguc-viewer. Here we selected “probability of occurrence of tropopause foldings”.

jors-9-382-g26.png
Figure 26

Adaguc displaying Satellite imagery from Meteosat (HRV, IR108, RDT-CW), Precipitation radars from OPERA and Lightning. A mix of polygons, points, and Netcdf CF is used in this application. Screenshot by AEMET. Contributors from NWCSAF, EUMETSAT, OPERA & NWCSAF2ADAGUC.

jors-9-382-g27.png
Figure 27

Jane’s Weather - A website with weather and climate forecast. Visualization is done with the Adaguc-server. Contourlines, wind barbs and shading methods are applied.

jors-9-382-g28.png
Figure 28

MeteoSat products visualization at NMA RO [11].

DOI: https://doi.org/10.5334/jors.382 | Journal eISSN: 2049-9647
Language: English
Submitted on: Jun 24, 2021
|
Accepted on: Nov 16, 2021
|
Published on: Dec 9, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Maarten Plieger, Ernst de Vreede, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.