Have a personal or library account? Click to login
oflibnumpy & oflibpytorch: Optical Flow Handling and Manipulation in Python Cover

oflibnumpy & oflibpytorch: Optical Flow Handling and Manipulation in Python

Open Access
|Nov 2021

References

  1. Bradski G. The OpenCV Library. Dr Dobb’s Journal of Software Tools, 2000; 25: 120125.
  2. Butler DJ, Wulff J, Stanley GB, Black MJ. A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon A, et al (Eds.), European Conf. on Computer Vision (ECCV), Springer-Verlag, 2012; 611625. DOI: 10.1007/978-3-642-33783-3_44
  3. Butler DJ, Wulff J, Stanley GB, Black MJ. 2021. URL http://sintel.is.tue.mpg.de/results, accessed: 11/06/21.
  4. Farnebäck G. Two-frame motion estimation based on polynomial expansion. In: Scandinavian conference on Image analysis, Springer, 2003; 363370. DOI: 10.1007/3-540-45103-X_50
  5. Harris CR, Millman KJ, van derWalt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, et al. Array programming with numpy. Nature, 2020; 585(7825): 357362. DOI: 10.1038/s41586-020-2649-2
  6. Horn BK, Schunck BG. Determining optical flow. Artificial intelligence, 1981; 17(1–3): 185203. DOI: 10.1016/0004-3702(81)90024-2
  7. Ilg E, Mayer N, Saikia T, Keuper M, Dosovitskiy A, Brox T. Flownet 2.0: Evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017; 24622470. DOI: 10.1109/CVPR.2017.179
  8. Liu C, et al. Beyond pixels: exploring new representations and applications for motion analysis. PhD thesis, Massachusetts Institute of Technology; 2009.
  9. Lucas BD, Kanade T. An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, 1981; 674679.
  10. Menze M, Heipke C, Geiger A. Object scene flow. ISPRS Journal of Photogrammetry and Remote Sensing, 2018; 140: 6076. DOI: 10.1016/j.isprsjprs.2017.09.013
  11. NVIDIA. 2020. URL https://docs.nvidia.com/cuda/, accessed: 11/06/21
  12. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S. Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 2019; 32: 80248035.
  13. Pathak D, Girshick R, Dollár P, Darrell T, Hariharan B. Learning features by watching objects move. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017; 27012710. DOI: 10.1109/CVPR.2017.638
  14. Pont-Tuset J, Perazzi F, Caelles S, Arbeláez P, Sorkine-Hornung A, Van Gool L. The 2017 DAVIS challenge on video object segmentation; 2017. arXiv preprint arXiv:170400675.
  15. Ravasio CS, Pissas T, Bloch E, Flores B, Jalali S, Stoyanov D, Cardoso JM, Da Cruz L, Bergeles C. Learned optical flow for intra-operative tracking of the retinal fundus. International journal of computer assisted radiology and surgery, 2020; 15(5): 827836. DOI: 10.1007/s11548-020-02160-9
  16. Royo D. flowvid: Optical flow video tools; 2021. URL https://pypi.org/project/flowvid/, accessed: 11/06/21.
  17. Runia T. flow-vis: Easy optical flow visualisation in python; 2021. URL https://pypi.org/project/flow-vis/, accessed: 11/06/21.
  18. Seznec M. flowpy: Tools for working with optical flow; 2021. URL https://pypi.org/project/flowpy/, accessed: 11/06/21.
  19. Sun D, Yang X, Liu MY, Kautz J. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018; 89348943. DOI: 10.1109/CVPR.2018.00931
  20. Teed Z, Deng J. RAFT: Recurrent all-pairs field transforms for optical flow. In: European Conference on Computer Vision, Springer, 2020; 402419. DOI: 10.1007/978-3-030-58536-5_24
  21. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, et al. Scipy 1.0: fundamental algorithms for scientific computing in python. Nature methods, 2020; 17(3): 261272. DOI: 10.1038/s41592-019-0686-2
DOI: https://doi.org/10.5334/jors.380 | Journal eISSN: 2049-9647
Language: English
Submitted on: Jun 21, 2021
|
Accepted on: Nov 10, 2021
|
Published on: Nov 26, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Claudio S. Ravasio, Lyndon Da Cruz, Christos Bergeles, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.