References
- Bringi, V N and Chandrasekar, V 2001 Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press. DOI: 10.1017/CBO9780511541094
- Ryzhkov, A V and Zrnic, D S 2019
Radar Polarimetry for Weather Observations . Springer Atmospheric Sciences. Springer International Publishing. ISBN 9783030050924. URLhttps://books.google.ch/books?id=d0uYvQEACAAJ . DOI: 10.1007/978-3-030-05093-1 - Tanamachi, R L and Heinselman, P L 2016 Rapid-scan, polarimetric observations of Central Oklahoma severe storms on 31 may 2013. Weather and Forecasting, 31(1): 19–42. DOI: 10.1175/WAF-D-15-0111.1
- Besic, N, Figueras i Ventura, J, Grazioli, J, Gabella, M, Germann, U and Berne, A 2016 Hydrometeor classification through statistical clustering of polarimetric radar measurements: A semi-supervised approach. Atmospheric Measurement Techniques, 9(9): 4425–4445. URL
https://www.atmos-meas-tech.net/9/4425/2016/ . DOI: 10.5194/amt-9-4425-2016 - Figueras i Ventura, J and Tabary, P 2013 The new french operational polarimetric radar rainfall rate product. Journal of Applied Meteorology and Climatology, 52(8): 1817–1835. DOI: 10.1175/JAMC-D-12-0179.1
- Bousquet, O and Chong, M 1998 A Multiple-Doppler Synthesis and Continuity Adjustment Technique (MUSCAT) to recover wind components from Doppler radar measurements. J. Atmos. Oceanic Technol. 15(2): 343–359. DOI: 10.1175/1520-0426(1998)015<;0343:AMDSAC>2.0.CO;2
- Sideris, I V, Foresti, L, Nerini, D and Germann, U 2020 Nowprecip: localized precipitation nowcasting in the complex terrain of switzerland. Quarterly Journal of the Royal Meteorological Society, 146(729): 1768–1800. URL
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3766 . DOI: 10.1002/qj.3766 - Sun, J and Wilson, J W 2003 The assimilation of radar data for weather prediction. Meteorological Monographs, 52: 175–198. DOI: 10.1175/0065-9401(2003)030<;0175:TAORDF>2.0.CO;2
- Hering, A M, Nisi, L, della Bruna, G, Gaia, M, Nerini, D, Ambrosetti, P, Hamann, U, Trefalt, S and Germann, U 2015 Fully automated thunderstorm warnings and operational nowcasting at meteoswiss. In: 8th European Conference on Severe Storms ECSS 2015, Vienna, Austria.
- Heistermann, M, Collis, S, Dixon, M J, Giangrande, S, Helmus, J J, Kelley, B, Koistinen, J, Michelson, D B, Peura, M, Pfaff, T and Wolff, D B 2015 The emergence of open-source software for the weather radar community. Bulletin of the American Meteorological Society, 96(1): 117–128. DOI: 10.1175/BAMS-D-13-00240.1
- Michelson, D, Henja, A, Ernes, S, Haase, G, Koistinen, J, Ośródka, K, Peltonen, T, Szewczykowski, M and Szturc, J 2018 BALTRAD advanced weather radar networking. Journal of Open Research Software, 6. DOI: 10.5334/jors.193
- Heistermann, M, Jacobi, S and Pfaff, T 2013 Technical note: An open source library for processing weather radar data (wradlib). Hydrology and Earth System Sciences, 17(2): 863–871. URL
https://www.hydrol-earth-syst-sci.net/17/863/2013/ . DOI: 10.5194/hess-17-863-2013 - Helmus, J J and Collis, S M 2016 The Python ARM radar toolkit (Py-ART), a library for working with weather radar data in the python programming language. Journal of Open Research Software, 4. DOI: 10.5334/jors.119
- Mather, J H and Voyles, J W 2013 The ARM climate research facility: A review of structure and capabilities. Bulletin of the American Meteorological Society, 94(3): 377–392. DOI: 10.1175/BAMS-D-11-00218.1
- Anderson, N G, Lang, T, Helmus, J J, Check your git settings! and Nesbitt, S. nguy/artview: Artview release v1.3, August 2017. DOI: 10.5281/zenodo.853317
- Lang, T 2015 Python-based scientific analysis and visualization of precipitation systems at NASA Marshall Space Flight Center. In: 5th Symposium on Advances in Modeling and Analysis Using Python. URL
https://ams.confex.com/ams/95Annual/webprogram/Paper262779.html . - Dixon, M and Wiener, G 1993 TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting-a radar-based methodology. Journal of Atmospheric and Oceanic Technology, 10(6): 785–797. DOI: 10.1175/1520-0426(1993)010<;0785:TTITAA>2.0.CO;2
- Pulkkinen, S, Nerini, D, Pérez Hortal, A A, Velasco-Forero, C, Seed, A, Germann, U and Foresti, L 2019 Pysteps: An open-source python library for probabilistic precipitation nowcasting (v1.0). Geoscientific Model Development, 12(10): 4185–4219. URL
https://www.geosci-model-dev.net/12/4185/2019/ . DOI: 10.5194/gmd-12-4185-2019 - Fabry, F 2015 Radar Meteorology: Principles and Practice. Cambridge University Press. DOI: 10.1017/CBO9781107707405
- Bringi, V N and Chandrasekar, V 2001 Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press. ISBN 9780521623841. URL
https://books.google.ch/books?id=KvJvfP9t5Y8C . DOI: 10.1017/CBO9780511541094 - Doviak, R J and Zrnic, D S 2006
Doppler Radar and Weather Observations . Dover Books on Engineering Series. Dover Publications. ISBN 9780486450605. URLhttps://books.google.ch/books?id=ispLkPX9n2UC . - Millman, K J and Aivazis, M 2011 Python for scientists and engineers. Computing in Science & Engineering, 13(2): 9–12. URL
https://aip.scitation.org/doi/abs/10.1109/MCSE.2011.36 . DOI: 10.1109/MCSE.2011.36 - SPHINX contributors 2020 Sphinx: Python documentation generator. URL
https://www.sphinx-doc.org . [Online; accessed 10-March-2020]. - Pylint contributors 2020 Pylint: Star your pyton code! URL
https://www.pylint.org/ . [Online; accessed 10-March-2020]. - Michelson, D B, Lewandowski, R, Szewczykowski, M, Beekhuis, H, Haase, G, Mammen, T, Faure, D, Simpson, M, Leijnse, H and Johnson, D 2019
EUMETNET OPERA weather radar information model for implementation with the HDF5 file format version 2.3 . Technical report, EUMETNET OPERA. URLhttps://www.eumetnet.eu/activities/observations-programme/current-activities/opera/ . - NOAA National Weather Service (NWS) Radar Operations Center 1991 Noaa next generation radar (nexrad) level 2 base data. Technical report, NOAA National Centers for Environmental Information.
- Dixon, M and Lee, W-C 2016 CfRadial data file format. Technical report, EOL, NCAR. URL
https://github.com/NCAR/CfRadial/tree/master/docs . - Rocklin, M 2015 Dask: Parallel Computation with Blocked algorithms and Task Scheduling. In: Huff, K and Bergstra, J (eds.), Proceedings of the 14th Python in Science Conference, 126–132. DOI: 10.25080/Majora-7b98e3ed-013
