References
- Baker, M 2016 1,500 scientists lift the lid on reproducibility. Nature, 533: 452–4. DOI: 10.1038/533452a
- Baudin, M, Dutfoy, A, Iooss, B and Popelin, A-L 2017
OpenTURNS: An In dustrial Software for Uncertainty Quantification in Simulation . In: ‘Handbook of Uncertainty Quantification’, 2001–2038. Springer International Publishing. DOI: 10.1007/978-3-319-12385-1_64 - Debusschere, B, Sargsyan, K, Safta, C and Chowdhary, K 2017
Uncertainty Quantification Toolkit (UQTk) . In: ‘Handbook of Uncertainty Quantification’, 1807–1827. Springer International Publishing. DOI: 10.1007/978-3-319-12385-1_56 - Feinberg, J and Langtangen, H P 2015 ‘Chaospy: An open source tool for designing methods of uncertainty quantification’. Journal of Computational Science, 11: 46–57. DOI: 10.1016/j.jocs.2015.08.008
- Gaudier, F 2010 ‘URANIE: The CEA/DEN Uncertainty and Sensitivity platform’. Procedia – Social and Behavioral Sciences, 2(6): 7660–7661. DOI: 10.1016/j.sbspro.2010.05.166
- Groen, D, Richardson, R A, Wright, D W, Jancauskas, V, Sinclair, R, Karlshoefer, P, Vassaux, M, Arabnejad, H, Piontek, T, Kopta, P, Bosak, B, Lakhlili, J, Hoenen, O, Suleimenova, D, Edeling, W, Crommelin, D, Nikishova, A and Coveney, P V 2019
Introducing VECMAtk – Verification Validation and Uncertainty Quantification for Multiscale and HPC Simulations . In: ‘Lecture Notes in Computer Science’, 479–492. Springer International Publishing. DOI: 10.1007/978-3-030-22747-0_36 - Herman, J and Usher, W 2017 ‘SALib: An open-source Python library for Sensitivity Analysis’. The Journal of Open Source Software, 2(9): 97. DOI: 10.21105/joss.00097
- Marelli, S and Sudret, B 2014 UQLab: A Framework for Uncertainty Quantification in Matlab, in ‘Vulnerability Uncertainty, and Risk’. American Society of Civil Engineers. DOI: 10.1061/9780784413609.257
- Myers, J and Copeland, R 2015 Essential SQLAlchemy: Mapping Python to Databases. O’Reilly Media, Inc.
- Nikishova, A and Hoekstra, A G 2019 ‘Semi-intrusive uncertainty propagation for multiscale models’. Journal of Computational Science, 35: 80–90. DOI: 10.1016/j.jocs.2019.06.007
- Oberkampf, W L, DeLand, S M, Rutherford, B M, Diegert, K V and Alvin, K F 2002 ‘Error and uncertainty in modeling and simulation’. Reliability Engineering & System Safety, 75(3): 333–357. DOI: 10.1016/S0951-8320(01)00120-X
- Oberkampf, W L and Roy, C J 2010 Verification and Validation in Scientific Computing. Cambridge University Press. DOI: 10.1017/CBO9780511760396
- Peng, R 2015 ‘The reproducibility crisis in science: A statistical counterattack’. Significance, 12(3): 30–32. DOI: 10.1111/j.1740-9713.2015.00827.x
- Richardson, R A, Wright, D W, Jancauskas, V, Lakhlili, J and Edeling, W 2019 ‘Easyvvuq v0.5’. Documentation at
https://easyvvuq.readthedocs.io . DOI: 10.5281/zenodo.3722092 - Roy, C J and Oberkampf, W L 2011 ‘A comprehensive framework for verification validation, and uncertainty quantification in scientific computing’. Computer Methods in Applied Mechanics and Engineering, 200(25–28): 2131–2144. DOI: 10.1016/j.cma.2011.03.016
- Rubinstein, R Y and Kroese, D P 2007 Simulation and the Monte Carlo Method. John Wiley & Sons Inc. DOI: 10.1002/9780470230381
- Saltelli, A, Ratto, M, Andres, T, Campolongo, F, Cariboni, J, Gatelli, D, Saisana, M and Tarantola, S 2008 Global sensitivity analysis: the primer. John Wiley & Sons. DOI: 10.1002/9780470725184
- Sobol, I M 1998 ‘On quasi-Monte Carlo integrations’. Mathematics and Computers in Simulation, 47(2–5): 103–112. DOI: 10.1016/S0378-4754(98)00096-2
- Tennøe, S, Halnes, G and Einevoll, G T 2018 Uncertainpy: A Python Toolbox for Uncertainty Quantification and Sensitivity Analysis in Computational Neuroscience. Frontiers in Neuroinformatics, 12. DOI: 10.3389/fninf.2018.00049
