References
- Castellani, B and Hafferty, F 2009
Sociology and Complexity Science: A New Field of Inquiry . Berlin: Springer. DOI: 10.1007/978-3-540-88462-0 - Cilliers, P 1998
Complexity & Postmodernism: Understanding Complex Systems . London: Routledge. - Byrne, D and Ragin, C C (Eds.) 2009
Case-Based Methods . Thousand Oaks, CA: Sage. - Byrne, D and Callaghan, G 2013
Complexity theory and the social sciences: The state of the art . London: Routledge. DOI: 10.4324/9780203519585 - Haynes, P 2018
Dynamic Pattern Synthesis for Management, Business and Economics . Chichester, UK: White Horse Books. - Castellani, B and Rajaram, R 2019
Data Mining Big Data: A Complex Critical Introduction . Part of the forthcoming Sage Quantitative Methods Kit. Sage. - Haynes, P 2017
Social synthesis: Finding dynamic patterns in complex social systems . London: Routledge. DOI: 10.4324/9781315458533 - Ragin, C C 2014
The comparative method: Moving beyond qualitative and quantitative strategies . University of California Press. DOI: 10.1525/9780520957350 - Castellani, B and Rajaram, R 2012 Case-based modelling and the SACS Toolkit: a mathematical outline. Comput Math Organ Theory, 18: 153–174. DOI: 10.1007/s10588-012-9114-1
- Rajaram, R and Castellani, B 2012 Modelling complex systems macroscopically: Case/agent-based modelling, synergetics, and the continuity equation. Complexity, 18: 8–17. DOI: 10.1002/cplx.21412
- Castellani, B, Rajaram, R, Gunn, J and Griffiths, F 2016 Cases, clusters, densities: Modelling the nonlinear dynamics of complex health trajectories. Complexity, 21: 160–180. DOI: 10.1002/cplx.21728
- Mitton, L, Sutherland, H and Weeks, M (Eds.) 2000
Microsimulation Modelling for Policy Analysis: Challenges and Innovations . Cambridge, UK: Cambridge University Press. - Gilbert, N and Troitzsch, K 2005
Simulation for the Social Scientist . New York, NY: Open University Press. - Jain, A K 2010 Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31: 651–666. DOI: 10.1016/j.patrec.2009.09.011
- Kuo, R J, Ho, L M and Hu, C M 2002 Integration of self-organizing feature map and K-means algorithm for market segmentation. Computers & Operations Research, 29: 1475–1493. DOI: 10.1016/S0305-0548(01)00043-0
- Chermack, T 2005 Studying scenario planning: Theory, research suggestions, and hypotheses. Technological Forecasting and Social Change, 72: 59–73. DOI: 10.1016/S0040-1625(03)00137-9
- Schwartz, P 1991
The Art of the Long View: Planning for the Future in an Uncertain World . New York, NY: Doubleday. - Börjeson, L, Höjer, M, Dreborg, K-H, Ekvall, T and Finnveden, G 2006 Scenario types and techniques: Towards a user’s guide. Futures, 38: 723–739. DOI: 10.1016/j.futures.2005.12.002
- Castellani, B, Barbrook-Johnson, P and Schimpf, C 2019 Case-based methods and agent-based modelling: bridging the divide to leverage their combined strengths. International Journal of Social Research Methodology, 22: 403–416. DOI: 10.1080/13645579.2018.1563972
- Booch, G, Rumbaugh, J and Jacobson, I 2005 The Unified Modelling Language User Guide, 2nd ed. Upper Sadle River, NJ: Pearson Education Inc.
- Huang, T S, Kohonen, T and Schroeder, M R (Eds.) 2000
Self-Organizing Maps , 3rd ed. Berlin: Springer. DOI: 10.1007/978-3-642-56927-2 - Barbrook-Johnson, P, Schimpf, C and Castellani, B 2019 Reflections On the Use of Complexity-Appropriate Computational Modeling for Public Policy Evaluation in the UK. Journal on Policy and Complex Systems, 5(1): 55–70. DOI: 10.18278/jpcs.5.1.4
