Have a personal or library account? Click to login
WPTherml: A Python Package for the Design of Materials for Harnessing Heat Cover

WPTherml: A Python Package for the Design of Materials for Harnessing Heat

Open Access
|Aug 2019

References

  1. https://flowcharts.llnl.gov/commodities/energy.
  2. Gupta, M C, Ungaro, C, Foley, J J, IV and Gray, S K 2018 Optical nanostructures design, fabrication, and applications for solar/thermal energy conversion. Solar Energy, 165: 100114. DOI: 10.1016/j.solener.2018.01.010
  3. Zhou, Z, Sakr, E, Sun, Y and Bermel, P 2016 Solar thermophotovoltaics: reshaping the solar spectrum. Nanophotonics, 5: 121. DOI: 10.1515/nanoph-2016-0011
  4. Jeon, N, Hernandez, J J, Rosenmann, D, Gray, S K, Martinson, A B F and Foley, J J, IV 2018 Pareto Optimal Spectrally Selective Emitters for Thermophotovoltaics via Weak Absorber Critical Coupling. Adv. Energy Mater, 8: 1801035. DOI: 10.1002/aenm.201801035
  5. Raman, A P, Anoma, M A, Zhu, L, Rephaeli, E and Fan, S 2014 Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515: 540544. DOI: 10.1038/nature13883
  6. Ilic, O, Bermel, P, Chen, G, Joannopoulos, J D, Celanovic, I and Soljačić, M 2016 Tailoring High Temperature Radiation and the Ressurection of the Incandescent Source. Nat. Nanotechnol, 11: 320324. DOI: 10.1038/nnano.2015.309
  7. Yeh, P 1988 Optical Waves in Layered Media. New York: Wiley.
  8. https://github.com/FoleyLab/wptherml/blob/master/documentation/Equations.pdf.
  9. Adamska, L, Sadasivam, S, Foley, J J, IV, Darancet, P and Sharifzadeh, S 2018 First-principles investigation of Borophene as a monolayer transparent conductor. J. Phys. Chem. C, 122: 40374045. DOI: 10.1021/acs.jpcc.7b10197
  10. https://matplotlib.org/contents.html.
  11. https://foleylab.github.io/wptherml/.
  12. https://github.com/FoleyLab/wptherml/blob/master/Validate_Cooling.ipynb.
  13. Raether, H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Verlag: Springer. DOI: 10.1007/BFb0048317
  14. Maier, S M 2007 Plasmonics: Fundamentals and applications. Springer. DOI: 10.1007/0-387-37825-1
  15. Foley, J J, IV, McMahon, J M, Schatz, G C, Harutyunyan, H, Wiederrecht, G P and Gray, S K 2014 Inhomogeneous surface plasmon polaritons. ACS Photon, 1: 739745. DOI: 10.1021/ph500172f
  16. Kats, M A, Blachard, R, Genevet, P and Capasso, F 2013 Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mat, 12: 2024. DOI: 10.1038/nmat3443
  17. Foley, J J, IV, Harutyunyan, H, Rosenmann, D, Divan, R, Wiederrcht, G P and Gray, S K 2015 When are Surface Plasmon Polaritons Excited in the Kretschmann-Raether Configuration? Sci. Rep, 5: 9929. DOI: 10.1038/srep09929
  18. Foley, J J, IV, Ungaro, C, Sun, K, Gupta, M C and Gray, S K 2015 Design of emitter structures based on resonant perfect absorption for thermophotovoltaic applications, 23: A1373A1387. DOI: 10.1364/OE.23.0A1373
  19. Byrnes, S J 2018 Multilayer Optical Calculations. https://arxiv.org/abs/1603.02720.
  20. https://pypi.org/project/tmm/.
  21. Yuffa, A J and Scales, J A 2012 Object-oriented electrodynamic S-matrix code with modern applications. J. Comp. Phys, 20: 48234835. DOI: 10.1016/j.jcp.2012.03.018
  22. https://pypi.org/project/openTMM/.
  23. https://kitchenknif.github.io/PyTMM/.
  24. https://github.com/ovidiopr/tmmnlay.
  25. https://www.mathworks.com/matlabcentral/fileexchange/47637-transmittance-and-reflectance-spectra-of-multilayered-dielectric-stack-using-transfer-matrix-method.
  26. Liu, V and Fan, S 2012 S4: A free electromagnetic solver for layered periodic structures. Comp. Phys. Comm, 183: 22332244. DOI: 10.1016/j.cpc.2012.04.026
  27. https://web.stanford.edu/group/fan/S4/.
  28. https://nanohub.org/resources/s4sim/about.
  29. https://github.com/FoleyLab/wptherml/blob/master/Validate_Fresnel.ipynb.
  30. https://github.com/FoleyLab/wptherml/blob/master/Validate_Cooling.ipynb.
  31. https://github.com/FoleyLab/wptherml/issues.
  32. Johnson, P B and Christy, R W 1972 Optical Constants of noble metals. Phys. Rev. B, 6: 4370. DOI: 10.1103/PhysRevB.6.4370
  33. Yang, H U, D’Archangel, J, Sundheimer, M L, Tucker, E, Boreman, G D and Raschke, M B 2015 Optical dielectric function of silver. Phys. Rev. B, 91: 235137. DOI: 10.1103/PhysRevB.91.235137
  34. Olmon, R L, Slovick, B, Johnson, T W, Shelton, D, Oh, S-H, Boreman, G D and Raschke, M B 2012 Optical dielectric function of gold. Phys. Rev. B, 86: 235147. DOI: 10.1103/PhysRevB.86.235147
  35. Rakić, A D 1995 Algorithm for the determination of intrinsic optical constants of metal films: application to aluminium. Appl. Opt, 34: 47554767. DOI: 10.1364/AO.34.004755
  36. Kischkat, J, Peters, S, Gruska, B, Semtsiv, M, Chashnikova, M, Klinkmüller, M, Fedosenko, O, Machulik, S, Aleksandrova, A, Monastyrskyi, G, Flores, Y and Masselink, W T 2012 Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt, 51: 67896798. DOI: 10.1364/AO.51.006789
  37. Palik, E D 1998 Handbook of optical constants of solids. Academic Press.
  38. Malitson, I H 1965 Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am, 55: 12051208. DOI: 10.1364/JOSA.55.001205
  39. Popova, S, Tolstykh, T and Vorobev, V 1972 Optical characteristics of amorphous quartz in the 1400–200 cm-1 region. Opt. Spectrosc, 33: 444445.
  40. Schinke, C, Peest, P C, Schmidt, J, Brendel, R, Bothe, K, Vogt, M R, Kröger, I, Winter, S, Schirmacher, A, Lim, S, Nguyen, H T and MacDonald, D 2015 Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Advances, 5: 67168. DOI: 10.1063/1.4923379
  41. Siefke, T, Kroker, S, Pfeiffer, K, Puffky, O, Dietrich, K, Franta, D, Ohlídal, I, Szeghalmi, A, Kley, E-B and Tünnermann, A 2016 Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range. Adv. Opt. Mater, 4: 17801786. DOI: 10.1002/adom.201600250
  42. Dashiell, M, et al. 2005 “Quaternary InGaAsSb Thermophotovoltaic Diode Technology”. Technical Report. DOI: 10.1063/1.1841919
  43. Martin, D and Algora, C. 2004 “Temperature-dependent GaSb material parameters for reliable thermophotovoltaic cell modelling”. Semicond. Sci. Technol, 19: 10401052. DOI: 10.1088/0268-1242/19/8/015
  44. ASTM G173-03 Reference Spectra Derived from SMARTS v. 2.9.2. https://www.nrel.gov/grid/solar-resource/smarts.html.
  45. IR Transmissivity data from https://www.gemini.edu/sciops/telescopes-and-sites/observing-condition-constraints/ir-transmission-spectra.
  46. Photopic luminosity function data from http://www.cvrl.org/lumindex.htm.
DOI: https://doi.org/10.5334/jors.271 | Journal eISSN: 2049-9647
Language: English
Submitted on: Mar 22, 2019
|
Accepted on: Aug 9, 2019
|
Published on: Aug 19, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 James F. Varner, Noor Eldabagh, Derek Volta, Reem Eldabagh, Jonathan J. Foley IV, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.