Have a personal or library account? Click to login
PyDDA: A Pythonic Direct Data Assimilation Framework for Wind Retrievals Cover

PyDDA: A Pythonic Direct Data Assimilation Framework for Wind Retrievals

Open Access
|Oct 2020

Figures & Tables

Table 1

List of cost functions currently implemented in PyDDA.

Cost FunctionSymbolRoutine
TotalJ(v)J_function
Radar observationsJocalculate_radial_vel_cost_function
Mass continuityJmasscalculate_mass_continuity
Vertical vorticityJvcalculate_vertical_vorticity_cost
RawinsondeJrcalculate_background_cost
SmoothnessJscalculate_smoothness_cost
ModelJmodelcalculate_model_cost
PointJpointcalculate_point_cost
Table 2

List of cost function gradients currently implemented in PyDDA.

Cost FunctionSymbolGradient
TotalJ(v)grad_J
Radar observationsJocalculate_grad_radial_vel
Mass continuityJmasscalculate_mass_continuity_gradient
Vertical vorticityJvcalculate_vertical_vorticity_gradient
RawinsondeJrcalculate_background_gradient
SmoothnessJscalculate_smoothness_gradient
ModelJmodelcalculate_model_gradient
PointJpointcalculate_point_cost
Table 3

List of current initialization options in PyDDA.

InitializationRoutine name
Constant wind fieldmake_constant_wind_field
Py-ART HorizontalWindProfile objectmake_wind_field_from_profile
Weather Research and Forecasting (WRF)make_background_from_wrf
High Resolution Rapid Refresh (HRRR)make_initialization_from_hrrr
jors-8-264-g1.png
Figure 1

An example wind barb plot overlaid on radar reflectivity at 3.5 km altitude for winds retrieved in thunderstorms sampled by 2 radars over Darwin. Contours represent the presence of updrafts with given velocities at the 3.5 km height level. The area inside the two circles indicate where the wind retrieval is most reliable.

jors-8-264-g2.png
Figure 2

(a) An example streamline plot overlaid on radar reflectivity at 3 km altitude observed from 2 radars over Darwin, Australia. Contours represent horizontal wind speed. (b) as (a), but zoomed into the region enclosed by the grey box. Contours represent vertical wind speed.

jors-8-264-g3.png
Figure 3

Winds at 0.5 km retrieved by PyDDA using only data from the 2 NEXRAD radars overlaid on a reflectivity mosaic generated from the two NEXRAD radars. Barbs are in m s1.

jors-8-264-g4.png
Figure 4

As Figure 3, but only using the HRRR model as a constraint.

jors-8-264-g5.png
Figure 5

As Figure 3, but using both the radar and HRRR winds as constraints.

DOI: https://doi.org/10.5334/jors.264 | Journal eISSN: 2049-9647
Language: English
Submitted on: Feb 28, 2019
|
Accepted on: Sep 16, 2020
|
Published on: Oct 7, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Robert Jackson, Scott Collis, Timothy Lang, Corey Potvin, Todd Munson, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.