Have a personal or library account? Click to login
ugtm: A Python Package for Data Modeling and Visualization Using Generative Topographic Mapping Cover

ugtm: A Python Package for Data Modeling and Visualization Using Generative Topographic Mapping

Open Access
|Dec 2018

Figures & Tables

jors-6-235-g1.png
Figure 1

Graph of ugtm v2.0 modules: (1) ugtm_classes: classes for generative topographic mapping (GTM) models, (2) ugtm_core: kernel GTM (kGTM) and GTM core functions, (3) ugtm_gtm: expectation-maximization algorithm for GTM, (4) ugtm_kgtm: expectation-maximization algorithm for kGTM, (5) ugtm_landscape: functions for colouring maps, (6) ugtm_predictions: GTM-based prediction algorithms, (7) ugtm_sklearn: sklearn-compatible eGTM transformer, eGTC classifier, and eGTR regressor, (8) ugtm_preprocess: preprocessing functions for data scaling and PCA preprocessing, using sklearn, (9) ugtm_plot: plotting functions for GTM maps, using matplotlib and mpld3, (10) ugtm_crossvalidate: cross-validation workflows.

jors-6-235-g2.png
Figure 2

Generative topographic mapping (GTM) representations of the S curve dataset (downloaded from sklearn): mean positions, modes, and landscape for continuous labels. The code to reproduce this plot is accessible online (https://ugtm.readthedocs.io/en/latest/visualization_examples.html). The GTM projection can be compared to t-distributed stochastic neighbor embedding (t-SNE), multidimensional scaling (MDS) or locally linear embedding (LLE). The axes x1 and x2 are latent axes found by the corresponding algorithm.

jors-6-235-g3.png
Figure 3

GTM representations of the hand-written digits dataset (digits 0 to 5, from the UCI database): mean positions, modes, and class map for discrete labels. The code to reproduce this plot is accessible online (https://ugtm.readthedocs.io/en/latest/visualization_examples.html). The GTM projection can be compared to t-distributed stochastic neighbor embedding (t-SNE), multidimensional scaling (MDS) or locally linear embedding (LLE). The axes x1 and x2 are latent axes found by the corresponding algorithm.

DOI: https://doi.org/10.5334/jors.235 | Journal eISSN: 2049-9647
Language: English
Submitted on: Jun 6, 2018
|
Accepted on: Nov 27, 2018
|
Published on: Dec 19, 2018
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Héléna Alexandra Gaspar, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.