Have a personal or library account? Click to login
Glyph: Symbolic Regression Tools Cover
Open Access
|Jun 2019

References

  1. Schmidt, M and Lipson, H “Distilling Free-Form Natural Laws from Experimental Data”. In: Science, 324(5923): 8185. Apr. 2009. DOI: 10.1126/science.1165893
  2. Koza, J R Genetic programming: On the programming of computers by means of natural selection, 1. MIT press, 1992.
  3. Vladislavleva, E, et al. “Predicting the energy output of wind farms based on weather data: Important variables and their correlation”. In: Re-newable Energy, 50: 236243. Feb. 2013. DOI: 10.1016/j.renene.2012.06.036
  4. Quade, M, et al. “Prediction of dynamical systems by symbolic regression”. In: Physical Review E, 94(1). July 2016. DOI: 10.1103/PhysRevE.94.012214
  5. Gout, J, et al. “Synchronization control of oscillator networks using symbolic regression”. In: Nonlinear Dyn, 91(2): 10011021. Nov. 2017. DOI: 10.1007/s11071-017-3925-z
  6. Duriez, T, Brunton, S L and Noack, B R Machine Learning Control – Taming Nonlinear Dynamics and Turbulence. Springer International Publishing, 2017. DOI: 10.1007/978-3-319-40624-4
  7. Schmidt, M D, et al. “Automated refinement and inference of analytical models for metabolic networks”. In: Physical Biology, 8(5). Aug. 2011. DOI: 10.1088/1478-3975/8/5/055011
  8. Schmidt, M and Lipson, H “Age-Fitness Pareto Optimization”. In: Genetic Programming Theory and Practice VIII, 129146. New York: Springer, Oct. 2010. DOI: 10.1007/978-1-4419-7747-2_8
  9. La Cava, W, Danai, K and Spector, L “Inference of compact nonlinear dynamic models by epigenetic local search”. In: Engineering Applications of Artificial Intelligence, 55: 292306. Oct. 2016. DOI: 10.1016/j.engappai.2016.07.004
  10. Galvan-Lopez, E “Efficient graph-based genetic programming representation with multiple outputs”. In: International Journal of Automation and Computing, 5(1): 8189. Jan. 2008. DOI: 10.1007/s11633-008-0081-4
  11. Akgul, F ZeroMQ. Packt Publishing, 2013.
  12. Ecma International. “The JSON Data Interchange Format”. In: Standard ECMA-404, 9(2013).
  13. Jorke, G, Lampe, B and Wengel, N Arithmetische Algorithmen der Mikrorechentechnik. Verlag Technik, 1989.
  14. Lorenz, E N “Deterministic Nonperiodic Flow”. In: Journal of the At-mospheric Sciences, 20(2): 130141. 1963. DOI: 10.1175/1520-0469(1963)020<;0130:DNF>2.0.CO;2
  15. MachineLearningControl. OpenMLC-Python. Aug. 2017. URL: https://github.com/MachineLearningControl/OpenMLC-Python.
  16. De Rainville, F-M, et al. “DEAP”. In: ACM SIGEVOlution, 6(2): 1726. (Feb. 2014). DOI: 10.1145/2597453.2597455
DOI: https://doi.org/10.5334/jors.192 | Journal eISSN: 2049-9647
Language: English
Submitted on: Sep 12, 2017
|
Accepted on: May 20, 2019
|
Published on: Jun 17, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Markus Quade, Julien Gout, Markus Abel, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.