Have a personal or library account? Click to login
Data from the Efficacy Study of From Here to There! A Dynamic Technology for Improving Algebraic Understanding Cover

Data from the Efficacy Study of From Here to There! A Dynamic Technology for Improving Algebraic Understanding

Open Access
|Apr 2023

References

  1. Alibali, M. W., Knuth, E. J., Hattikudur, S., McNeil, N. M., & Stephens, A. C. (2007). A longitudinal examination of middle school students’ understanding of the equal sign and equivalent equations. Mathematical Thinking and Learning, 9(3), 221247. DOI: 10.1080/10986060701360902
  2. Booth, J. L., & Davenport, J. L. (2013). The role of problem representation and feature knowledge in algebraic equation-solving. The Journal of Mathematical Behavior, 32(3), 415423. DOI: 10.1016/j.jmathb.2013.04.003
  3. Bush, S. B., & Karp, K. S. (2013). Prerequisite algebra skills and associated misconceptions of middle grade students: A review. The Journal of Mathematical Behavior, 32(3), 613632. DOI: 10.1016/j.jmathb.2013.07.002
  4. Bye, J. K., Lee, J. E., Chan, J. Y. C., Closser, A. H., Shaw, S. T., & Ottmar, E. (2022). Perceiving precedence: Order of operations errors are predicted by perception of equivalent expressions. Poster presented at the annual meeting of the American Educational Research Association (AERA), San Diego, CA. DOI: 10.3102/1884787
  5. Chan, J. Y., Ottmar, E., & Lee, J. E. (2022b). Slow down to speed up: Longer pause time before solving problems relates to higher strategy efficiency. Learning and Individual Differences, 93, 102109. DOI: 10.1016/j.lindif.2021.102109
  6. Chan, J. Y. C., Lee, J., Mason, C., Sawrey, K., & Ottmar, E. (2022a). Equivalence task in From Here to There!: A digital algebraic notation system impacts conceptual understanding in middle school mathematics. Journal of Educational Psychology. DOI: 10.1037/edu0000596
  7. Decker-Woodrow, L., Mason, C. A., Lee, J. E., Chan, J. Y. C., Sales, A., Liu, A., & Tu, S. (2023). The impacts of three educational technologies on algebraic understanding in the context of COVID-19. AERA Open, 1(9), 117. DOI: 10.1177/23328584231165919
  8. Engage, N. Y. (2014). New York State Education Department. https://www.engageny.org
  9. Ganley, C. M., & McGraw, A. L. (2016). The development and validation of a revised version of the math anxiety scale for young children. Frontiers in psychology, 7, 1181. DOI: 10.3389/fpsyg.2016.01181
  10. Heffernan, N. T., & Heffernan, C. L. (2014). The ASSISTments ecosystem: Building a platform that brings scientists and teachers together for minimally invasive research on human learning and teaching. International Journal of Artificial Intelligence in Education, 24(4), 470497. DOI: 10.1007/s40593-014-0024-x
  11. Hulse, T., Daigle, M., Manzo, D., Braith, L., Harrison, A., & Ottmar, E. R. (2019). From Here to There! elementary: A game-based approach to developing number sense and early algebraic understanding. Educational Technology Research and Development, 67(2), 423441. DOI: 10.1007/s11423-019-09653-8
  12. Hussar, B., Zhang, J., Hein, S., Wang, K., Roberts, A., Cui, J., Smith, M., Bullock Mann, F., Barmer, A., & Dilig, R. (2020). The Condition of Education 2020 (NCES 2020-144). U.S. Department of Education. Washington, DC: National Center for Education Statistics.
  13. Iannacchione, A., Ottmar, E., Ngo, V., Mason, C. A., Chan, J. Y. C., Smith, H., Drzewiecki, K. C., & Shaw, S. T. (2022). Examining relations between math anxiety, prior knowledge, hint usage, and performance of math equivalence in two different online learning contexts. Instructional Science, 123. DOI: 10.1007/s11251-022-09604-6
  14. Illustrative Mathematics. (2017). Illustrative mathematics project. https://www.illustrativemathematics.org
  15. Kirshner, D., & Awtry, T. (2004). Visual salience of algebraic transformations. Journal for Research in Mathematics Education, 35(4), 224257. DOI: 10.2307/30034809
  16. Knuth, E. J., Stephens, A. C., McNeil, N. M., & Alibali, M. W. (2006). Does understanding the equal sign matter? Evidence from solving equations. Journal for Research in Mathematics Education, 37(4), 297312.
  17. Landy, D., & Goldstone, R. L. (2007). Formal notations are diagrams: Evidence from a production task. Memory & Cognition, 35(8), 20332040. DOI: 10.3758/BF03192935
  18. Lee, J. E., Chan, J. Y. C., Botelho, A., & Ottmar, E. (2022a). Does slow and steady win the race?: Clustering patterns of students’ behaviors in an interactive online mathematics game. Educational Technology Research and Development, 70(5), 15751599. DOI: 10.1007/s11423-022-10138-4
  19. Lee, J. E., Hornburg, C. B., Chan, J. Y. C., & Ottmar, E. (2022b). Perceptual and number effects on students’ solution strategies in an interactive online mathematics game. Journal of Numerical Cognition, 8(1), 166182. DOI: 10.5964/jnc.8323
  20. Lee, J. E., Stalin, A., Ngo, V., Drzewiecki, K., Trac, C., & Ottmar, E. (2022c). Show the flow: Visualization of students’ solution strategies with Sankey diagrams in an online mathematics game. Journal of Interactive Learning Research, 33(2), 97126.
  21. Lynch, K., & Star, J. R. (2014). Teachers’ views about multiple strategies in middle and high school mathematics. Mathematical Thinking and Learning, 16(2), 85108. DOI: 10.1080/10986065.2014.889501
  22. Midgley, C., Maehr, M. L., Hruda, L. Z., Anderman, E., Anderman, L., Freeman, K. E., & Urdan, T. (2000). Manual for the patterns of adaptive learning scales. Ann Arbor: University of Michigan.
  23. Ottmar, E. R., & Landy, D. (2017). Concreteness fading of algebraic instruction: Effects on learning. Journal of the Learning Sciences, 26(1), 5178. DOI: 10.1080/10508406.2016.1250212
  24. Ottmar, E. R., Landy, D., & Goldstone, R. L. (2012). Teaching the perceptual structure of algebraic expressions: Preliminary findings from the pushing symbols intervention. N. Miyake, D. Peebles, & R. P. Cooper (Eds.), Proceedings of the 34th Annual Conference of the Cognitive Science Society (pp. 21562161). http://www.indiana.edu/~pcl/papers/pushingsymbols.pdf
  25. Ottmar, E. R., Landy, D., Goldstone, R., & Weitnauer, E. (2015). Getting From Here to There!: Testing the effectiveness of an interactive mathematics intervention embedding perceptual learning. In D. C. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the Annual Conference of the Cognitive Science Society, (pp. 17931798). Cognitive Science Society. https://cogsci.mindmodeling.org/2015/papers/0311/paper0311.pdf
  26. Star, J. R., Pollack, C., Durkin, K., Rittle-Johnson, B., Lynch, K., Newton, K., & Gogolen, C. (2015). Learning from comparison in algebra. Contemporary Educational Psychology, 40, 4154. DOI: 10.1016/j.cedpsych.2014.05.005
  27. Utah Math Project. (2016). The Utah Middle School Math Project. http://utahmiddleschoolmath.org
  28. Weitnauer, E., Landy, D., & Ottmar, E. (2016). Graspable math: Towards dynamic algebra notations that support learners better than paper. In 2016 Future Technologies Conference (FTC) (pp. 406414). IEEE. DOI: 10.1109/FTC.2016.7821641
  29. Wilkinson, M., Dumontier, M., Aalbersberg, I, et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Sci Data, 3, 160018. DOI: 10.1038/sdata.2016.18
DOI: https://doi.org/10.5334/jopd.87 | Journal eISSN: 2050-9863
Language: English
Published on: Apr 4, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Erin Ottmar, Ji-Eun Lee, Kirk Vanacore, Siddhartha Pradhan, Lauren Decker-Woodrow, Craig A. Mason, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.