References
- 1Aggarwal, S., Kumar, S., & Mamidi, R. (2021). Efficient multilingual text classification for Indian languages. Proceedings of Recent Advances in Natural Language Processing (pp. 19–25). DOI: 10.26615/978-954-452-072-4_003
- 2Bagga, S., & Piper, A. (2022). HATHI 1M: Introducing a million page historical prose dataset in English from the Hathi Trust. Journal of Open Humanities Data, 8, 7. DOI: 10.5334/johd.71
- 3Chi, Z., Dong, L., Wei, F., Mao, X., & Huang, H. (2019). Can monolingual pretrained models help cross-Lingual classification? Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing. DOI: 10.48550/arXiv.1911.03913
- 4Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, É., Ott, M., Zettlemoyer, L., & Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. Proceeding of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 8440–8451). DOI: 10.18653/v1/2020.acl-main.747
- 5Evans, E., & Wilkens, M. (2018). Nation, Ethnicity, and the Geography of British Fiction, 1880–1940. Journal of Cultural Analytics, 3(2). DOI: 10.22148/16.024
- 6Fenlon, K., Fallaw, C., Cole, T., & Han, M. (2014). A preliminary evaluation of HathiTrust metadata: Assessing the sufficiency of legacy records. IEEE/ACM Joint Conference on Digital Libraries (pp. 317–320). DOI: 10.1109/JCDL.2014.6970186
- 7Gil, A., & Ortega, É. (2016).
Global outlooks in digital humanities: Multilingual practices and minimal computing . In C. Crompton, R. Lane & R. Siemens (Eds.), Doing Digital Humanities: Practice, training, research (pp. 22–34). London; New York: Routledge. - 8Mahony, S. (2018). Cultural diversity and the Digital Humanities. Fudan Journal of the Humanities and Social Sciences, 11(3), 371–388. DOI: 10.1007/s40647-018-0216-0
- 9Odebrecht, C., Burnard, L., & Schöch, C. (2021). European Literary Text Collection (ELTeC): April 2021 release with 14 collections of at least 50 novels. (v1.1.0). Zenodo. DOI: 10.5281/zenodo.4662444
- 10ONNX Runtime developers. (2021). ONNX Runtime.
https://onnxruntime.ai . - 11Piper, A. (2022). The CONLIT dataset of contemporary literature. Journal of Open Humanities Data, 8, 24. DOI: 10.5334/johd.88
- 12Ryan, M.-L. (1980). Fiction, non-factuals, and the principle of minimal departure. Poetics, 9(4), 403–422. DOI: 10.1016/0304-422X(80)90030-3
- 13Spence, P. J., & Brandao, R. (2021). Towards language sensitivity and diversity in the digital humanities. Digital Studies/Le champ numérique, 11(1). DOI: 10.16995/dscn.8098
- 14Underwood, T. (2014). Understanding genre in a collection of a million volumes. Interim Performance Report for the Digital Humanities Start-up Grant. DOI: 10.17613/M6W07V
- 15Van Eijnatten, J., Pieters, T., & Verheul, J. (2013). Big Data for global history: The transformative promise of Digital Humanities. Low Countries Historical Review, 128(4), 55–77. DOI: 10.18352/bmgn-lchr.9350
