References
- 1Bamman, D., Underwood, T., & Smith, N. A. (2014). A bayesian mixed effects model of literary character. In Proceedings of the 52nd annual meeting of the association for computational linguistics (volume 1: Long papers) (pp. 370–379). DOI: 10.3115/v1/P14-1035
- 2Bode, K. (2020). Why you can’t model away bias. Modern Language Quarterly, 81(1), 95–124. DOI: 10.1215/00267929-7933102
- 3Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., et al. (2020). Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th annual meeting of the association for computational linguistics (pp. 8440–8451). Online:
Association for Computational Linguistics . Retrieved fromhttps://aclanthology.org/2020.acl-main.747 . DOI: 10.18653/v1/2020.acl-main.747 - 4Foucault, M. (2013). Archaeology of knowledge. London: Routledge. DOI: 10.4324/9780203604168
- 5Fyfe, P., & Ge, Q. (2018). Image analytics and the nineteenth-century illustrated newspaper. Journal of Cultural Analytics, 1(2), 11032. DOI: 10.22148/16.026
- 6Gil, A., & Ortega, É. (2016). Global outlooks in digital humanities: Multilingual practices and minimal computing. In Doing digital humanities (pp. 58–70). Routledge.
- 7Hutto, C., & Gilbert, E. (2014). Vader: A parsimonious rule-based model for sentiment analysis of social media text. Retrieved from
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8109 - 8Joachims, T. (1998).
Text categorization with support vector machines: Learning with many relevant features . In European conference on machine learning (ecml) (pp. 137–142). Berlin: Springer. DOI: 10.1007/BFb0026683 - 9Koselleck, R. (2004). Futures past: on the semantics of historical time. Columbia University Press.
- 10Luhmann, N. (1995). Social systems. Stanford: Stanford University Press.
- 11Mak, B. (2011). How the page matters. Toronto: University of Toronto Press.
- 12Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing a word-emotion association lexicon. Computational Intelligence, 29(3), 436–465. DOI: 10.1111/j.1467-8640.2012.00460.x
- 13Organisciak, P., Schmidt, B. M., & Downie, J. S. (2022). Giving shape to large digital libraries through exploratory data analysis. Journal of the Association for Information Science and Technology, 73(2), 317–332. Retrieved from
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.24547 . DOI: 10.1002/asi.24547 - 14Piper, A., Wellmon, C., & Cheriet, M. (2020). The page image: Towards a visual history of digital documents. Book History, 23(1), 365–397. DOI: 10.1353/bh.2020.0010
- 15Schmidt, B. (2018). Stable random projection: Lightweight, general-purpose dimensionality reduction for digitized libraries. Journal of Cultural Analytics, 3(1). DOI: 10.22148/16.025
- 16Underwood, T. (2019). Distant horizons: digital evidence and literary change. Chicago: University of Chicago Press. DOI: 10.7208/chicago/9780226612973.001.0001
- 17Underwood, T., Kimutis, P., & Witte, J. (2020). NovelTM datasets for english-language fiction, 1700–2009. Journal of Cultural Analytics, 5(2). DOI: 10.22148/001c.13147
- 18Wilkens, M. (2021). Too isolated, too insular: American literature and the world. Journal of Cultural Analytics, 6(3). DOI: 10.22148/001c.25273
